ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Металлоискатель по принципу Передача-Прием. Схема, описание

ЛУЧШИЙ МЕТАЛЛОИСКАТЕЛЬ

Почему именно Volksturm был назван лучшим металлоискателем? Главное - схема реально простая и реально рабочая. Из множества схем металлоискателей, которые я лично делал, именно здесь всё просто, глубинобойно и надёжно! Тем более при своей простоте, в металлодетекторе есть хорошая схема дискриминации - определение железо или цветной металл находится в земле. Сборка металлоискателя заключается в безошибочной пайке платы и настройке катушек в резонанс и в ноль на выходе входного каскада на LF353. Ничего тут суперсложного нет, было бы желание и мозги. Смотрим конструктивное исполнение металлоискателя и новую усовершенствованную схему Volksturm с описанием.

Так как по ходу сборки возникают вопросы, чтоб сэкономить ваше время и не заставлять перелистывать сотни страниц форума, здесь приведены ответы на 10 самых популярных вопросов. Статья в процессе написания, так что некоторые пункты будут дополнены позже.

1. Принцип работы и обнаружения целей этого металлоискателя?
2. Как проверить Работает ли плата металлоискателя?
3. Какой резонанс выбрать?
4. Какие конденсаторы лучше?
5. Как настроить резонанс?
6. Как сводить катушки в ноль?
7. Какой провод для катушек лучше?
8. Какие детали и чем можно заменить?
9. От чего зависит глубина поиска целей?
10. Питание металлоискателя Volksturm?

Принцип работы металлоискателя Volksturm

Постараюсь в двух словах о принципе работы: передача,прием и баланс индукции. В поисковом датчике металлоискателя устанавливают 2 катушки - передающую и приемную. Присутствие металла изменяет индуктивную связь между ними (в том числе и фазу), что влияет на принимаемый сигнал, который затем обрабатывается блоком индикации. Между первой и второй микросхемой стоит коммутатор управляемый импульсами генератора сдвинутого по фазе относительно передающего канала (т.е. когда передатчик работает, приемник отключен и наоборот если приемник включен передатчик отдыхает, а приемник спокойно ловит отраженный сигнал в этой паузе). Итак, вы включили металлоискатель и он пищит. Отлично, если пищит - значит многие узлы работают. Давай разберёмся почему именно он пищит. Генератор на у6Б постоянно генерирует тональный сигнал. Далее он поступает на усилитель на двух транзисторах, но унч не откроется (не пропустит тон) пока напряжение на выходе у2Б (7-й вывод) не разрешит ему этого. Данное напряжение выставляется изменением режима с помощью этого самого резистора трэш. Им надо выставить такое напряжение, чтоб унч почти открылся и пропустил сигнал с генератора. И входные пару милливольт с катушки металлоискателя пройдя усилительные каскады, превысят этот порог и он откроется окончательно и динамик запищит. Теперь проследим прохождение сигнала, точнее сигнала отклика. На первом каскаде (1-у1а) будет пару милливольт, можно до 50. На втором каскаде (7-у1Б) это отклонение увеличится, на третьем(1-у2А) будет уже пару вольт. Но без отклика везде на выходах по нулям.

Как проверить работает ли плата металлоискателя

Вообще усилитель и ключ (CD 4066) проверяется пальцем на входной контакт RX при максимальном сопротивлении сенс и максимальным фоном на динамике. Если изменение фона есть при нажатии пальцем на секунду, то ключ и операционники работают, далее подключаем катушки RX с конденсатором контура параллельно, конденсатор на катушке TX последовательно, ложим одну катушку на другую и начинаем сводить в 0 по минимальному показанию переменного тока на первой ноге усилителя U1A. Далее берем что-нибудь большое и железное и проверяем есть в динамике реакция на металл или нет. Проверим напряжение на у2Б (7-й вывод) оно должно регулятором трэш, меняться +-пару вольт. Если нет - проблема в данном каскаде ОУ. Для начала проверки платы отключаем катушки и включаем питание.

1. Должен идти звук при положении регулятора сенс на максимальное сопротивление, коснёмся пальцем на РХ - если есть реакция, все операционники работают, если нет - проверяем пальцем начиная с u2 и меняем (обследуем обвязку) нерабочего ОУ.

2. Работа генератора проверяется программой частотомер. Штекер от наушников припаять к 12 выводу CD4013 (561ТМ2) предусмотрительно выпаяв р23 (чтоб звуковую карту не спалить). В звуковой плате использовать In-lane. Смотрим частоту генерации, ее стабильность на 8192 гц. Если она сильно смещена, то надо выпаивать конденсатор с9, если и после она не четко выделена и/или много частотных всплесков рядом - заменяем кварц.

3. Проверили усилители и генератор. Если все исправно, но все равно не работает - меняем ключ (CD 4066).

Какой резонанс катушек выбрать

При подключении катушки в последовательный резонанс,увеличивается ток в катушке и общее потребление схемы. Увеличивается расстояние обнаружения цели, но это только на столе. На реальном грунте, земля будет чувствоваться тем сильнее, чем больше ток накачки в катушке. Лучше включение параллельного резонанса, а поднимать чутье входными каскадами. Да и батареек хватит намного дольше. Не смотря на то, что последовательный резонанс применяется во всех фирменных дорогих металодетекторах, в Штурме нужен именно параллельный. В импортных, дорогих приборах, хорошая схематика отстройки от земли, поэтому в этих приборах можно позволить последовательный.

Какие конденсаторы лучше установить в схему металлоискателя

Тип подключаемого к катушке конденсатора не при чём, а если экспериментально поменяли два и увидели что с одним из них резонанс лучше, то просто один из якобы 0,1 мкФ реально имеет 0,098 мкФ, а другой 0,11. Вот и разница между ними по резонансу получается. Я использовал советские К73-17 и зелёные импортные подушки.

Как настроить резонанс катушек металлоискателя

Катушка, как самый лучший вариант, получается из штукатурных терок, склеенных эпоксидной смолой с торцов до нужного вам размера. Причем, центральная ее часть с куском ручки этой самой терки, которая обрабатывается до одного широкого ушка. На штанге же, наоборот, вилка из двух ушек крепления. Такое решение позволяет решить проблему деформирования катушки, при затягивании пластикового болта. Пазы для обмоток делают обычным выжигателем, затем установка ноля и заливка. От холодного конца ТХ, оставим 50 см. провода, который изначально не заливать, а свить из него маленькую катушечку (диаметром 3 см.) и разместить ее внутри RX, перемещая и деформируя ее в небольших пределах, можно добиться точного ноля, но делать это лучше на улице, размещая катушку у земли (как при поиске) при отключенном GEBе, если он есть, затем окончательно залить смолой. Тогда отстройка от земли, работает более- менее сносно (исключение сильно минерализованный грунт). Такая катушка получается легкой, прочной, мало подверженной термодеформации, а обработанная и окрашенная очень симпатичная. И еще одно наблюдение: если металлоискатель собран с отстройкой от грунта (GEB) и при центральном расположении движка резистора выставить ноль очень маленькой шайбой, диапазон регулировки GEBа +- 80-100 мВ. Если установить ноль большим предметом- монета 10-50 коп. диапазон регулировки увеличивается до +- 500-600 мВ. За напряжением в процессе настройки резонанса не гонитесь - у меня при 12в питания около 40В при последовательном резонансе. Чтоб появилась дискриминация конденсаторы в катушках включаем параллельно (последовательное включение нужно только на этапе подбора кондеров для резонанса) - на черные металлы будет протяжный звук, цветные - короткий.

Или ещё проще. Подключаем катушки по очереди к передающему ТХ выходу. Настраиваем в резонанс одну, а настроив её - другую. Пошагово: Подключили, параллельно катушке ткнули мультиметром на пределе переменные вольты, так-же параллельно катушке припаяли конденсатор 0.07-0.08 мкф, смотрим показания. Допустим 4 В - очень слабо, не в резонансе с частотой. Ткнули параллельно первому конденсатору второй небольшой ёмкости - 0.01 мкф (0.07+0.01=0.08). Смотрим - уже показал вольтметр 7 В. Отлично, увеличим ещё ёмкость, подключим на 0.02 мкФ - смотрим на вольтметр, а там 20 В. Великолепно, едем дальше - ещё докинем пару тысяч пик ёмкости. Ага. Уже начало падать, откатим назад. И так добиться максимальных показаний вольтметра на катушке металлоискателя. Затем аналогично с другой (приёмной) катушкой. Настроить на максимум и подключить обратно к приёмному гнезду.

Как сводить катушки металлоискателя в ноль

Для настройки нуля подключаем тестер на первую ногу LF353 и понемногу начинаем сжимать, растягивать катушку. После залива из эпоксидки - нолик точно убежит. Поэтому надо заливать не всю катушку, а оставить места для регулировки, и после высыхания доводить до нуля и заливать окончательно. Взять кусок шпагата и половину катушки обвязать одним витком к середине (к центральной части,месту соединения двух катушек) вставить в петлю шпагата кусочек палочки после чего ее крутить (натягивать шпагат) - катушка будет сжиматься, поймав нолик шпагат пропитать клеем, после почти полного высыхания опять подправить нолик повернув палочку еще чуть-чуть и залить шпагат окончательно. Или проще: Передающая закреплена в пластмассе неподвижно, а приёмную накладываем на первую на 1 см, типа как свадебные кольца. На первом выводе U1A будет писк 8 кГц - можно контролировать вольтметром переменного тока, но лучше просто высокоомными наушниками. Так вот приёмную катушку металоискателя надо то надвигать, то сдвигать с передающей до тех пор, пока на выходе ОУ писк не стихнет до минимума (или показания вольтметра не упадут до нескольких милливольт). Всё, катушка сведена, фиксируем.

Какой провод для поисковых катушек лучше

Провод для намотки катушек не имеет значения. От 0.3 до 0.8 пойдёт любой, всё равно придётся немного подбирать ёмкость для настройки контуров в резонанс и на частоту 8.192 кГц. Конечно и более тонкий провод вполне подходит, просто чем он толще, тем добротность и, как следствие чутьё - лучше. Но если намотать 1 мм - будет довольно тяжеловато таскать. На листе бумаги рисуем прямоугольник 15 на 23 см. От левого верхнего и нижнего угла откладываем по 2,5 см, и соединяем их линией. С правым верхним и нижними углами проделываем тоже самое, но откладываем по 3 см. По средине нижней части ставим точку и по точке слева и справа на расстоянии 1 см. Берем фанеру, накладываем этот эскиз и вбиваем гвоздики во все точки указанные. Берем провод ПЭВ 0,3 и мотаем 80 витков провода. Но честно говоря без разницы сколько витков. Всё равно частоту 8 кГц будем выставлять в резонанс конденсатором. Сколько намотали - столько и намотали. Я мотал 80 витков и конденсатор 0.1 мкф, если намотаете допустим 50 - ёмкость соответственно где-то 0.13 мкф поставить придётся. Далее, не снимая с шаблона обматываем катушку толстой ниткой - типа как обматывают жгуты проводов. После покрываем катушку лаком. Когда высохнет, снимаем катушку с шаблона. Затем идёт обмотка катушки изоляцией - фум лента или изолента. Далее - обмотка приёмной катушки фольгой, можно взять ленту из электролитических конденсаторов. TX катушку можно не экранировать. Не забудьте оставить РАЗРЫВ в экране 10 мм, по середине катушки. Дальше идёт обмотка фольги луженым проводом. Этот провод вместе с начальным контактом катушки у нас будет массой. И наконец обмотка катушки изолентой. Индуктивность катушек около 3,5мГ. Емкость получается около 0,1мкф. Что касается заливки катушки эпоксидкой, то я не заливал её вообще. Просто туго замотал изолентой. И ничего, два сезона отходил с этим металлоискателем без ухода настроек. Обратите внимание на влагоизоляцию схемы и поисковых катушек, ведь придётся по мокрой траве косить. Всё должно быть герметично - иначе попадёт влага и настройка поплывёт. Ухудшится чувствительность.

Какие детали и чем можно заменить

Транзисторы :
BC546 - 3шт или КТ315.
BC556 - 1шт или КТ361
Операционники :

LF353 - 1шт или меняйте на более распространенную TL072.
LM358N - 2шт
Цифровые микросхемы :
CD4011 - 1шт
CD4066 - 1шт
CD4013 - 1шт
Резисторы постоянные , мощностью 0,125-0,25 Вт:
5,6К - 1шт
430К - 1шт
22К - 3шт
10К - 1шт
390К - 1шт
1К - 2шт
1,5К - 1шт
100К - 8шт
220К - 1шт
130К - 2шт
56К - 1шт
8,2К - 1шт
Резисторы переменные :
100К - 1шт
330К - 1шт
Конденсаторы неполярные :
1нФ - 1шт
22нФ - 3шт (22000пФ = 22нФ = 0.022мкФ)
220нФ - 1шт
1мкФ - 2шт
47нФ - 1шт
10нФ - 1шт
Конденсаторы электролитические :
220мкФ на 16В - 2шт

Динамик миниатюрный.
Кварцевый резонатор на 32768 Гц.
Два сверхярких светодиода разного цвета.

Если вы не можете достать импортные микросхемы, вот отечественные аналоги: CD 4066 - К561КТ3, CD4013 - 561ТМ2, CD4011 - 561ЛА7, LM358N - КР1040УД1. У микросхемы LF353 - прямого аналога нет, но смело ставим LM358N или лучше TL072, TL062. Совсем не обязательно ставить операционный усилитель именно - LF353, я просто поднял усиление на U1A заменив резистор в цепи отрицательной обратной связи 390 кОм на 1 мОм - чувствительность значительно возросла на процентов 50, правда после этой замены ушёл ноль, пришлось на катушку в определённом месте приклеить скотчем кусочек алюминиевой пластинки. Советские три копейки чувствует по воздуху на расстоянии 25 сантиметров и это при питании 6 вольт, потребляемый ток без индикации - 10 мА. И не забудь про панельки - удобство и простота настройки значительно повысятся. Транзисторы КТ814, Кт815 - в передающую часть металлоискателя, КТ315 в УНЧ. Транзисторы - 816 и 817 желательно подобрать с одинаковым коэффициентом усиления. Заменимы на любые соответствующей структуры и мощности. В генераторе металлоискателя установлен специальный часовой кварц на частоту 32768 Гц. Это стандарт абсолютно для всех кварцевых резонаторов, которые стоят в любых электронных и электромеханических часах. В том числе и наручных и дешёвых китайских настенных/настольных. Архивы с печатной платой для варианта и для (вариант с ручной отстройкой от земли).

От чего зависит глубина поиска целей

Чем больше диаметр катушки металлоискателя, тем глубже чутьё. А вообще, глубина обнаружения цели данной катушкой, зависит прежде всего от размера самой цели. Но при увеличении диаметра катушки наблюдается уменьшение точности обнаружения объекта и даже иногда потеря мелких целей. Для объектов с монету, этот эффект наблюдается при увеличении размера катушки свыше 40 см. Итого: большая поисковая катушка, имеет большую глубину обнаружения и больший захват, но менее точно обнаруживает цель, чем маленькая. Большая катушка идеальна для поиска глубоких и больших целей, таких как клады и крупные объекты.

По форме катушки делятся на круглые и эллиптичные (прямоугольные). Эллиптичная катушка металлоискателя обладает лучшей избирательностью по сравнению с круглой, потому что ширина магнитного поля у нее меньше и в поле ее действия попадает меньше посторонних объектов. Но круглая имеет большую глубину обнаружения и лучшую чувствительность к цели. Особенно на слабо минерализованных грунтах. Круглая катушка наиболее часто используется при поиске с металлоискателем.

Катушки диаметром меньше 15 см называют маленькими, катушки диаметром 15-30 см называют средними и катушки свыше 30 см - большие. Большая катушка генерирует большее электромагнитное поле, поэтому она имеет большую глубину обнаружения, чем маленькая. Большие катушки генерируют большое электромагнитное поле и соответственно, имеют большую глубину обнаружения и покрытие при поиске. Такие катушки используются для просмотра больших площадей, но при их использовании, может возникнуть проблема на сильно замусоренных площадках потому, что в поле действия больших катушек может попасться сразу несколько целей и металлоискатель среагирует на более крупную цель.

Электромагнитное поле маленькой поисковой катушки тоже маленькое, поэтому с такой катушкой лучше всего искать на территориях сильно замусоренных всякими мелкими металлическими предметами. Маленькая катушка идеальна для обнаружения маленьких объектов, но имеет небольшую площадь покрытия и сравнительно небольшую глубину обнаружения.

Для универсального поиска хорошо подойдут средние катушки. Такой размер поисковой катушки сочетает в себе достаточную глубину поиска и чувствительность к целям с разными размерами. Я делал каждую катушку диаметром примерно 16 см и обе эти катушки укладывал в круглую подставку из-под старого монитора 15". В таком варианте глубина поиска этого металлоискателя будет такая: алюминиевая пластина 50x70 мм - 60 см, гайка М5-5 см, монетка - 30 см, ведро - около метра. Данные значения получены на воздухе, в земле будет на 30% меньше.

Питание металлоискателя

Отдельно схема металлоискателя тянет 15-20 мА, при подключенной катушке + 30-40 мА, итого вместе до 60 мА. Конечно в зависимости от типа применяемого динамика и светодиодов это значение может изменяться. Простейший случай - питание взял 3 (или даже две) последовательно подключенные литий ионные батарейки от мобил на 3,7В и при заряде разряженных аккумуляторов, когда подключаем любой блок питания на 12-13в, ток заряда начинается от 0,8А и падает до 50ма за час и тогда вообще не надо что-то добавлять, хотя ограничительный резистор конечно же не помешает. Как вообще самый простейший вариант - крона на 9В. Но учтите, что металлоискатель съест её за 2 часа. Но для настройки этот вариант питания самое оно. Крона при любых обстоятельствах не выдаст большой ток, который может спалить что-то в плате.

Самодельный металлоискатель

А теперь описание процесса сборки металлодетектора от одного из посетителей. Так как из приборов имею только мультиметр, скачал с инета виртуальную лабораторию Записных О.Л. Собрал адаптер, простенький генератор и прогнал в холостую осциллограф. Вроде показывает какую-то картинку. Далее занялся поиском радиодеталей. Так как печатки в основном выкладывают в формате «lay», скачал «Sprint-Layout50». Выяснил, что такое лазерно-утюжная технология изготовления печатных плат и как их травить. Вытравил плату. К этому времени все микросхемы были найдены. Что не нашел у себя в сарайчике, пришлось покупать. Приступил к пайке перемычек, резисторов, сокетов микросхем, и кварца из китайского будильника на плату. Периодически проверяя сопротивление на шинах питания чтобы не было соплей. Решил для начала собрать цифровую часть прибора, как наиболее легкую. То-есть генератор, делитель и коммутатор. Собрал. Поставил микросхему генератора (К561ЛА7) и делитель (К561ТМ2). Микросхемы б/ушные, выдрал из каких-то плат, обнаруженных в сарайчике. Подал питание 12В контролируя ток потребления по амерметру, 561ТМ2 стала теплой. Заменил 561ТМ2, подал питание - ноль эмоций. Меряю напряжение на ногах генератора - на 1 и 2 ногах 12В. Меняю 561ЛА7. Включаю - на выходе делителя, на 13 ноге есть генерация (наблюдаю на виртуальном осциллографе)! Картинка правда не ахти какая, но за неимением нормального осциллографа - пойдет. Но на 1, 2 и 12 ногах ничего нет. Значит генератор работает, нужно менять ТМ2. Установил третью микросхему делителя - красота на всех выходах есть генерация! Для себя сделал вывод, что выпаивать микросхемы нужно как можно аккуратнее! На этом первый шаг постройки сделан.

Теперь настраиваем плату металлоискателя. Не работал регулятор "SENS" - чувствительность, пришлось выкинуть конденсатор C3 после этого регулировка чувствительности заработала как надо. Не нравился звук возникающий в крайнем левом положении регулятора "THRESH" - порог, избавился от этого заменив резистор R9 цепочкой из последовательно соединённых резистор на 5,6 кОм + конденсатор на 47,0 мкФ (отрицательный вывод конденсатора со стороны транзистора). Пока нет микросхемы LF353 вместо неё поставил LM358, с ней советские три копейки чувствует по воздуху на расстоянии 15 сантиметров.

Поисковую катушку на передачу я включил как последовательный колебательный контур, а на приём как параллельный колебательный контур. Настраивал первой передающую катушку, подключил собранную конструкцию датчика к металлоискателю, осциллограф параллельно катушке и по максимальной амплитуде подобрал конденсаторы. После этого осциллограф подключил на приёмную катушку и по максимальной амплитуде подобрал конденсаторы на RX. Настройка контуров в резонанс занимает, при наличии осциллографа, несколько минут. Обмотки TX и RX у меня содержат по 100 витков провода диаметром 0,4. Начинаем сведение на столе, без корпуса. Просто чтоб было два обруча с проводами. А чтоб убедиться в работоспособности и возможности сведения вообще - разведём катушки друг от дрга на полметра. Тогда ноль будет точно. Затем наложив катушки внахлёст примерно 1см (как свадебные кольца) сдвигать - раздвигать. Точка нуля может быть довольно точная и поймать её сразу нелегко. Но она есть.

Когда, я поднял усиление в RX тракте МД, он начал работать неустойчиво на максимальной чувствительности, это проявлялось в том что после прохождения над целью и её обнаружении выдавался сигнал, но он продолжался и после того когда цели перед поисковой катушкой ни какой уже небыло, это проявлялось в виде прерывистых и колеблющихся звуковых сигналов. При помощи осциллографа была обнаружена и причина этого: при работе динамика и незначительной просадке питающего напряжения уходит "ноль" и схема МД переходит в автоколебательный режим, выйти из которого можно только загрубив порог срабатывания звукового сигнала. Это меня не устраивало поэтому я поставил по питанию КР142ЕН5А + сверх яркий белый светодиод чтобы поднять напряжение на выходе интегрального стабилизатора, стабилизатора на более высокое напряжение у меня небыло. Такой светодиод можно использовать даже для подсветки поисковой катушки. Динамик подключил до стабилизатора, МД после этого стал сразу очень послушный всё начало работать как надо. Думаю Volksturm действительно лучший самодельный металлоискатель!

Недавно была предложенна данная схема доработки, что позволит превратить Volksturm S в Volksturm SS + GEB. Теперь прибор станет обладать хорошим дискриминатором а также селективностью металлов и отстройкой от грунта, прибор паяется на отдельной плате и подключается вместо конденсаторов с5 и с4. Схема доработки и в архиве. Отдельная благодарность за информацию по сборке и настройке металлоискателя всем, кто принимал участие в обсуждении и модернизации схемы, особенно помогли в подготовке материала Электродыч, феска, xxx, slavake, ew2bw, redkii и другие коллеги радиолюбители.

Принцип работы металлоискателя

Принцип работы металлоискателя

Как известно, металлоискатель способен обнаруживать присутствие металлических предметов, абсолютно не контактируя с ними. Информирование оператора о наличии металла происходит с помощью специальных сигналов: звука, перемещения стрелки, изменения в показателях индикатора и т.д.

В зависимости от принципа работы можно выделить такие виды металлоискателей:

1. Металлоискатель с электронным частотомером

Принцип работы такого металлоискателя основывается на оценке электронным частотомером частоты измерительного генератора, когда сам датчик еще находится вдали от мишени. Полученное значение «запоминается» регистром. После чего, в процессе поиска интересующих объектов, электронный частотомер занимается беспрерывным измерением частоты принимающего генератора. Из полученных данных вычитается показатель эталонной частоты, а результат выводится на экран индикации.

Схема метал детектора с электронным частотометром

2. Металлоискатель на биениях

Принцип работы металлоискателя на биениях основывается на совокупности разности частот, исходящих от двух генераторов. Один из этих генераторов имеет стабильную частоту, а в систему второго входит датчик, представляющий собой катушку индуктивности. Если металлические предметы не располагаются вблизи металлоискателя, значения частот генераторов в приборе практически совпадают. Наличие же металла возле датчика приводит к резкому изменению частоты генератора.


Схема метал детектора на биениях

Регистрация разности частот может происходить самыми различными путями. Простейшим способом является прослушивание сигнала с помощью головных телефонов или громкоговорителя. Также часто используются цифровые способы измерения колебания частот.

3. Металлоискатели с принципом работы «передача-прием»

Принцип работы такого металлоискателя заключается в регистрации сигнала, который отразился от металлического предмета. Возникновение отраженного сигнала является результатом воздействия магнитного поля с переменным потоком катушки прибора на мишень (предмет из металла). При этом, в структуру прибора входит, как минимум, две катушки, одна из которых «отвечает» за передачу сигнала, а другая – за его прием.

Работа металлоискателя «передача-прием» основывается на определенном взаимо расположении катушек, исключающем воздействие одной на другую. Таким образом, если посторонние металлические предметы отсутствуют, излучающая катушка наводит нулевой сигнал на систему приемной. Появление же металлических предметов вблизи катушек приводит к возникновению специального сигнала.

4. Одно катушечный индукционный металлоискатель

Конструкция датчика данного прибора включает в себя только одну катушку, следящую за частотными изменениями. Если вблизи с металлоискателем появляется мишень, возникает отраженный сигнал. В катушке его «наводит» дополнительный электрический сигнал. Оператору потребуется только выделить этот сигнал. Зарегистрировать отраженный сигнал можно методом вычисления из присутствующего в катушке электрического показателя сигнал аналогичной фазы, частоты, амплитуды, что наблюдался в условиях отсутствия металла поблизости.

В целом, одно катушечный индукционный металлоискатель сочетает в себе характеристики приборов, работающих на биении с аппаратами принципа «передачи-приема». Таким образом, одно катушечный металлоискатель отличается высокой чувствительность и простотой конструкции.

5. Импульсный металлоискатель

Импульсный металлоискатель характеризуется высокой чувствительностью и может использоваться для поиска различных предметов даже на большой глубине. В основу работы такого металлоискателя положен временной метод разделения сигналов излучения и отражения. Такой метод очень часто применяется в эхо- и радиолокации импульсного типа.

Генератором импульсов формируется импульсы тока кратковременного диапазона, которые впоследствии поступают в излучающую катушку. Здесь уже происходит их преобразование в импульсы магнитной индукции. Поскольку генератор импульсов, т.е. излучающая катушка, имеет индуктивный характер, на импульсных фронтах возникают «перегрузки» в форме перепадов в напряжении. Данные всплески могут достигать амплитудных показателей в десятки, а то и сотен вольт. Однако, все же, лучше не использовать защитные ограничители, т.к. может произойти затягивание фронта импульсного тока и магнитной индукции. В результате, усложнится процесс отделения сигнала отражающего типа.


Схема импульсного метал детектора

Следует отметить, что излучающая и приемная катушка могут располагаться в абсолютно произвольном порядке. Это обусловлено тем, что проникновение излучаемого сигнала и влияние на катушку отраженного разнесены по определенным временным промежуткам. Кроме этого, одна и та же катушка может выполнять любую из ролей: как принимать сигнал, так и отражать его.

6. Магнитометры

Магнитометры – приборы, предназначением которых является изменением показателей магнитного поля. При этом, магнитометры могут использоваться и в качестве металлоискателей. Это возможно благодаря тому, что магнитное поле Земли может искажаться различными материалами с ферромагнитными свойствами, например, железом. Обнаружение таких объектов происходит путем регистрации отклонений от исходного для определенной местности модуля магнитного поля. В результате, можно наблюдать некоторую магнитную неоднородность (аномалии), которые как раз и могут быть вызваны предметами из металла.

В отличие от рассмотренных выше металлоискателей, магнитометры охватывают больший диапазон обнаружения железных предметов. Наверное, многим приходилось слышать о нахождении с помощью магнитометра, например, автомобиля, расположенного на расстоянии 10 метров от оператора. В тоже время, главным недостатком магнитометров является их неспособность обнаруживать предметы, изготовленные из цветных металлов. К тому же, магнитометр может реагировать не только на железо, но и на так званые естественные магнитные аномалии. Это могут быть, к примеру, залежи минералов или отдельные минералы и т.д.


Схема магнитометра

7. Радиолокаторы

Принцип работы любого радиолокатора основывается на методе изучения электромагнитной энергии, ее отражения и прием от различных объектов, находящихся в воздухе, на море или земле. Отраженный сигнал принимается для дальнейшей обработки и анализа. В результате, можно безошибочно определить местонахождение интересующего объекта, его скорость и траекторию движения.

Радиолокаторы обладают целым рядом неоспоримых преимуществ. Так, они позволяют работать с достаточно большими расстояниями. Сигнал, который был отражен можно считать таковым, что полностью подчиняется законам геометрической оптики, а его ослабления пропорционально лишь второй степени расстояния. В тоже время, серьезным недостатком радиолокатора является то, что излучая электромагнитные волны, он позволяет обнаружить свое местонахождение. Однако сейчас интенсивно ведется поиск методов, помогающих скрыть сигнатуры радиолокаторов и вполне возможно, что в скором времени удастся избавить от указанного недостатка.

Металлоискатель - очень заманчивое устройство, его можно использовать для самых разных целей, например для поиска старой проводки, водопроводных труб, ну и в конце концов клада. Понятие металлоискатель очень обширное, сами металлоискатели бывают разными, принцип поиска металла заложенный в классических металлоискателях применяется в самых разных устройствах начиная от простых детекторов заканчивая радиолокационными станциями.

В последнее время большую популярность набирают так называемые импульсные металлоискатели которые в своем составе содержат только одну катушку и имеют относительно простую конструкцию, при этом обеспечивают довольно неплохую чувствительность и высокую надежность. Импульсный металлоискатель работает по принципу прием передача, поисковая катушка в таком металлоискателе может работать в двух режимах - приема и передачи. Излучаемый катушкой сигнал генерирует или возбуждает в металле вихревые токи фуко, которые улавливаются самой катушкой.

У разных металлов разная электропроводность и многие металоискатели умеют распозновать это с достаточно высокой точностью, определяя что за металл находится в земле.

Приведенная схема металлоискателя в сети встречается очень часто, но фото реальных конструкций и отзывов крайне мало, поэтому было решено повторить схему, и опробовать его в деле.

Печатная плата получилась довольно компактной, сделана она методом лут.

Достоинств у схемы много:

  • наличие всего одной катушки;
  • крайне простая и не капризная схема, которая практически не требует дополнительной настройки;
  • вся схема построена на всего лишь одной микросхеме;
  • малая чувствительность к грунту;
  • при желании металлоискатель можно настроить так, чтобы он видел только цветные металлы и игнорировал черные, т.е. некое подобие функции дискриминации металлов.

Из недостатков:

  • малая глубина поиска - крупные металлические предметы детектор замечает на расстоянии до 30 см, средние монеты до 5-и 8-и см.

Этого мало, но смотря для каких целей... Например для поиска старых водопроводных труб в стене схема справляется на 100%.

Схема построена на одной КМОП микросхеме CD4011, которая содержит 4 логических элемента 2И-НЕ. Она состоит из 4-х частей, опорного и поисковых генераторов, смесителя и усилителя сигнала, который выполнен на одном транзисторе. В качестве динамической головки предпочтительно использовать наушники с сопротивлением от 16-и до 64-х ом, т.к. выходной каскад не рассчитан под низкоомную нагрузку.



Работает металлоискатель следующим образом. Изначально поисковый и опорный генераторы настроены на одинаковую частоту, поэтому из динамика мы ничего не слышим. Частота опорного генератора фиксированная с возможностью ручной подстройки путем вращения переменного резистора. Частота поискового генератора сильно зависит от параметров LC контура. Если в поле зрения поисковой катушки появиться металлический предмет, нарушается частота LC контура, вследствие чего меняется частота поискового генератора относительно опорного. Смеситель выделяет разницу частот этих генераторов, которая в виде звукового сигнала, фильтруется и поступает на усилительный каскад, нагрузкой для которого является наушник.

Катушка

Чем больше диаметр катушки, тем чувствительнее металлоискатель, но большие катушки имеют свои недостатки, поэтому нужно выбрать оптимальные параметры. Для этой схемы наиболее оптимальный диаметр лежит в пределах от 15-и до 20 -и см, диаметр провода 0,4-0,6мм, количество витков 40-50, в случае, если диаметр катушки в пределах 20 см. В моем случае катушка урезана, витки и диаметр меньше, чем нужно, поэтому чувствительность схемы не ахти. Если планируется использовать металлоискатель в условиях повышенной влажности, катушку необходимо загерметизировать.



Настройка

Все наладочные работы делаются при отсутствии металла в поле зрения катушки!

Если при первом подключении схема не реагирует на металл, но все компоненты исправны, скорее всего разница частот с генераторов находится за пределами звукового диапазона и звук просто не воспринимается человеком. В этом случае стоит покрутить переменный резистор до появления звукового сигнала. Далее медленно вращаем тот же резистор до тех пор, пока из динамика не услышим низкочастотный сигнал, затем еще чуток вращаем его в том же направлении до полного исчезновения сигнала. Этим настройка завершена.

Для более точной настройки советую использовать многооборотный резистор, либо два обычных переменных, один из которых предназначен для грубой настройки, а второй для более плавной. После настройки проверяем металлоискатель поднося к его катушке металлический предмет и убеждаемся, что тональность звукового сигнала меняется, то есть схема реагирует на металл.

Эффект дискриминации металлов наблюдается в том случае, если оба генератора работают на частоте около 130-135кГц, при этом чувствительность к черным металлам почти отсутствует.

Схему можно питать от постоянного источника с напряжением от 3-х до 15 вольт, оптимальный вариант - использовать 9-и вольтовую батарейку 6F22, ток потребления схемы в этом случае будет в пределах от 15 до 30 мА в зависимости от сопротивления нагрузки.



Металлоискатель применяется для поисков различных типов металла. Но мало кто знает, как же он устроен. Разберемся, какие принципы лежат в работе металлоискателя, в чем его отличие от металлодетектора и какие типы металлоискателей известны.

Металлоискатель и металлодетектор: есть ли разница?

Строго говоря, оба эти понятия обозначают одно и то же. Зачастую, их используют как синонимы. Правда, в сознании говорящего и слушающего при произнесении слова «металлоискатель» чаще возникает картинка человека, ищущего клад в лесу с длинным инструментом с датчиком на конце. А в случае с «металлодетектором» сразу представляются магнитные рамки в аэропорту и люди со специальными ручными датчиками, реагирующими на металл. Как видим, для обывателя различие заключается только в представлении.

Если же обратиться к истокам, то будет ясно, что металлоискатель - это просто русский эквивалент английского термина «metal detector», а «металлодетектор», в таком случае» - всего лишь транслитерированный перевод.

Однако, в профессиональной среде русскоязычных людей, которые часто пользуются этими приборами существует представление о четком различии между ними. Металлодетектором называют недорогой прибор, способный лишь обнаружить наличие или же отсутствие металла в определенной среде. Соответственно, металлоискатель - это прибор похожего назначения, но его преимущество заключается в том, что с помощью него дополнительно возможно определить тип металлического объекта. Цена такого инструмента на несколько порядков выше. По целям эти приборы совпадают, однако характер их выполнения различен. Поэтому на вопрос «чем отличается металлоискатель от металлодетектора» можно ответить с полной уверенностью, что это различие лежит в сфере дополнительного функционала, оставляя при этом неизменными цели и задачи, относящиеся к такой технике.

Но для удобства будем придерживаться всем понятной точки зрения. Обозначим аппарат, использующийся для поиска в грунте или под водой термином «металлоискатель», а «металлодетекторами» будем называть ручные досмотровые и специальные арочные устройства, применяющиеся в работе различными охранными службами.

Как работает металлоискатель

Однозначно ответить на этот вопрос довольно сложно. Существует масса различных вариантов устройства этого прибора. И найти «свой» среди всего многообразия потенциальному покупателю бывает непросто.

Самый распространенный - электронный прибор, функционирующий на определенных частотах, способен обнаруживать металлические объекты соответственно заданным параметрам в так называемой нейтральной или же слабопроводящей среде. Понятно, что он реагирует на проводимость материалов, из которых изготовлены предметы. Прибор такой конструкции называется импульсным. Это когда излучаемый прибором и отраженный предметом сигналы передаются через некоторые доли секунд. Именно они и фиксируется техникой. Кратко описать принцип работы импульсного металлоискателя можно так: импульсы генератора тока, как правило, за миллисекунды поступают в излучающую катушку, где трансформируются в импульсы магнитной индукции. На импульсных составляющих генератора образуются резкие скачки напряжения. Они отражаются в приемной катушке (в более сложных типах устройств у одной катушки есть способность выполнять обе функции) за определенные промежутки времени. Потом сигналы поступают по каналу связи на блок обработки и понятными символами выводятся для последующего восприятия их человеком.

Но нужно быть внимательным, ведь у такого популярного типа техники существует ряд недостатков:

  1. Трудность дифференциации обнаруженных объектов по типу металла;
  2. Большая амплитуда напряжения;
  3. Техническая сложность коммутации и генерации;
  4. Наличие радиопомех.

Другие типы металлоискателей по принципу работы

Такие приборы состоят из большинства известных моделей. Некоторые из них уже сняты с производства, однако до сих пор применяются на практике.

  1. BFO (Beat Frequency Oscillation). В основе - подсчет и фиксация разницы частоты колебаний. В зависимости от типа металла (черного или цветного) частота то повышается, то понижается. Такие приборы теперь не выпускаются, они устарели. Но произведенные ранее модели все еще работают. Характеристики такого металлоискателя оставляют желать лучшего. У него небольшая глубина обнаружения, сильная зависимость результатов поиска от типа грунта (малоэффективен на кислых, минерализованных почвах), низкая чувствительность.
  2. TR (Transmitter Reciver). Оборудование типа «прием-передача». Также относится к устаревшим. Проблемы такие же, как и у предыдущего типа (не работает на минерализованных грунтах) за исключением глубины обнаружения. Она является довольно большой.
  3. VLF (Very Low Frequency). Зачастую такой аппарат сочетает две схемы действия: «прием-передачу» и низкочастотное исследование. В ходе работы прибор анализирует сигнал по фазам. Его преимущества в высокой чувствительности, способности искать черные и цветные металлы на глубине. Но вот объекты, залегающие у поверхности ему обнаружить значительно труднее.
  4. PI (Pulse Induction). В основе - процесс индукции. Принцип работы металлоискателя заключен в катушке. Она - это сердце датчика. Появление внутри электромагнитного поля посторонних токов от металлических предметов активизирует отраженный импульс. Он достигает катушки в виде электрического сигнала. При этом аппарат четко воспринимает минерализованную и соленую почву с металлами. Токи, от солей достигают датчика гораздо быстрее и не отображаются графически или звуковом. Такой металлоискатель считается наиболее чувствительным из всех. Для ведения поисков на морском дне - это самый эффективный вариант устройства.
  5. RF (Radio Frequency / RF two-box) . Представляет собой прибор «прием-передача», только работающий на высоких частотах. Имеет две катушки (катушка приема и соответственно, катушка передачи). В основе работы этого металлоискателя лежит нарушение индукционного баланса: катушка, работающая на прием, фиксирует сигнал, который отражается от объекта. Изначально этот сигнал был послан катушкой-передачи. Характеристики такого металлоискателя делают возможным его применение с целью поиска неглубоко находящихся месторождений руд, полезных ископаемых на больших глубинах или же обнаружения крупных предметов. По глубине пробивания не имеет себе равных (от 1 до 9 метров в зависимости от типа почвы). Часто используется в промышленности. Копатели и кладоискатели не оставляют его без внимания. Существенный минус такого прибора - это его неспособность к обнаружению мелких предметов типа монет.

Принцип работы металлоискателя для поиска цветного металла особо не отличается от остальных. Он также зависит от типа и конструкции аппарата. При правильной настройке можно обнаружить цветной металл. Различия между ним и черным состоят лишь в том, что вихревые токи, отражающиеся от предмета из цветного металла, затухают дольше.

Чем еще отличаются металлоискатели?

Помимо внутренней «начинки» различия между металлоискателями имеются и в других моментах. Во-первых, они представлены в разных ценовых категориях. Есть приборы более дешевые и массовые, есть и те, которые можно отнести к премиум-классу.

Также уже в описании металлоискателей видна разница в выводе информации для доступа к ней пользователя. Аппараты могут быть запрограммированные на отображение графического информирования (выводится на специальном дисплее), звуковыми устройствами, сообщающими об обнаружении или отсутствии объекта (отличаются тем, что издают разные частоты). В более дорогих моделях могут быть представлены дисплеи с целыми шкалами дискриминационных значений.

Отличается и сама информация. Например, самые недорогие модели просто сообщают пользователю о том, есть металл или нет. Аппараты чуть подороже определяют какой это металл - черный или цветной. Самые дорогие модели могут предоставить полную информацию: сведения о глубине предмета, вероятностное отношение в процентах относительно металла, тип объекта.

Все виды металлоискателей

Приборы различаются по : принципу работы, выполняемым задачам, примененным элементам. О принципах уже написано выше, поэтому посмотрим, какими они бывают по задачам:

1. Глубинный;

2. Грунтовой;

3. Магнитометр;

4. Миноискатель.

По элементам могут быть микропроцессорными и аналоговыми.

Про характеристики

Различные аппараты характеризуются вариативностью параметров.

Принцип действия металлоискателя и его рабочая частота - классифицирующие параметры. Определяют тип прибора, например, профессиональный или грунтовой. Чувствительностью определяется глубина. Целеуказание позволяет настраивать прибор на заданный размер цели. Тип металла вычисляет дискриминатор. Вес, тут все просто: тяжелым прибором неудобно пользоваться длительное время. Тип почвы указывается при балансировке показателей грунта.

Работа с металлоискателем. Особенности

Нужно предварительно изучить свой прибор, его слабые места. Не следует гнаться за самыми последними моделями. Если у пользователя нет элементарных навыков и понимания того, как аппарат устроен, то ему не поможет никакой даже самый «навороченный» металлоискатель.

В каждой ценовой категории есть свои лидеры. Их и нужно выбирать, так как это модели, проверенные поколениями кладоискателей. Умение работать с прибором достигается только практикой. Пробуя раз за разом, человек начинает правильно расшифровывать те сигналы, которые подает ему техника. А от правильной расшифровки зависит основной вопрос: копать или не копать?

Например, зная какие элементы установлены внутри вашего металлоискателя, можно точно понять как работать с металлоискателем. Если это катушка-моно, то ее электромагнитное излучение выглядит конусообразным. Следовательно, при поисках есть «слепые зоны». Чтобы их устранить, нужно следить за тем, чтобы каждый проход с прибором перекрывал на 50 % предыдущий. Зная такие мелочи, можно наиболее эффективно применять металлоискатель.

Работа с металлоискателем предполагает получение определенного результата. Для этого необходимо, чтобы металлоискатель отвечал некоторым простым, но совершенно необходимым требованиям:

  1. Принцип работы металлоискателя должен позволять ему чувствовать металлические предметы на максимальной глубине;
  2. Обязательно должно быть разделение на черный и цветной металл;
  3. На приборе должен быть установлен оперативный процессор, обеспечивающий быструю работу. Это важно для распознания двух близлежащих объектов.

Как же правильно работать с металлоискателем? Начать необходимо с настройки прибора. Как правило, если мы хотим найти какой-то определенный объект, то и настройки нужно устанавливать соответствующие. Но есть 2 общих правила, соблюдение которых точно будет полезно новичкам.

  1. Снизить пороговое значение по параметру чувствительности. Так как повышение этого показателя зачастую приводит к усилению помех, то новичкам лучше пожертвовать способностью прибора обнаруживать предметы, лежащие рядом, чтобы точнее локализовать какую-то одну цель.
  2. Использовать параметр дискриминации «все металлы».

Это были указаны только некоторые общие сведения относительно того, как правильно пользоваться металлоискателем. Остановимся на этом подробнее. Самое главное –никогда не спешить! Площадь поисков разбивается на зоны, участки. Каждый из них следует медленно, внимательно проходить. Улавливатель необходимо держать как можно ближе к земле; работа металлоискателем должна быть плавной, без рывков. Аккуратно водите прибором из стороны в сторону. Если в земле обнаружен металл, то, как правило, вы услышите звуковой сигнал: четкий - свидетельство обнаружения небольшого предмета правильной формы, нечеткий, прерывистый - форма обнаруженного объекта неправильная. Научиться определять размеры находки и глубину ее залегания по звуку можно только опытным путем. Тип найденного металла классифицируется по шкале (аппарат отражает электрический импульс, а процессор исходя из этих данных вычисляет плотность материала, из которого изготовлен предмет).

Есть два режима: динамический (основной) и статический, они влияют на то, как правильно работать металлоискателем Статический - это независимое перемещение катушки над объектом; применяется для точного определения центра цели. Исследование территории происходит по определенной схеме:

  1. Катушка должна быть параллельна земле;
  2. Важно сохранять постоянное расстояние между землей и катушкой;
  3. Делать маленькие шаги. Не пропускать участки!
  4. Скорость движения должна составлять около полуметра в секунду;
  5. Высота прибора над землей - 3 или 4 см.

Поиски ведутся в динамическом режиме. При обнаружении стабильного сигнала переключайте аппарат в статический режим: крестообразными движениями водите над предполагаемым местом; там, где сигнал приобретает максимальную громкость и копайте. Обратно переключите металлоискатель в динамический режим. Копайте на половину штыка, подрезая ровный квадратный или круглый ком. Если объект все еще находится в яме, копайте дальше. Из дерна извлекать находку лучше методом половинного деления. После завершения поисков обязательно укладывайте дерн обратно в яму! Теперь вы точно знаете, как пользоваться металлоискателем.

Немного о металлодетекторах

Принципы работы металлодетекторов абсолютно такие же, как и у металлоискателей, различия имеются только в средах использования и мощности катушки. Из-за этого эффективность металлодетекторов меньше, в грунте они бы ничего не смогли обнаружить. Основными видами металлодетекторов являются: ручной досмотровый (дальность обнаружения до 25 метров) и арочный (рамочный).

Коротко описать, как работает ручной металлодетектор, можно так: устройство абсолютно готово к работе при включении, настройка не требуется, при обнаружении металла импульс постоянного тока фиксируется, включается звук и индикация.

3.1 МЕТАЛЛОИСКАТЕЛЬ ПО ПРИНЦИПУ "ПЕРЕДАЧА-ПРИЕМ"

Термины "передача-прием" и "отраженный сигнал" в различных поисковых приборах обычно ассоциируются с методами типа импульсной эхо- и радиолокации, что является источником заблуждений, когда речь заходит о металлоискателях. В отличие от различного рода локаторов, в металлоискателях рассматриваемого типа как передаваемый сигнал (излучаемый), так и принимаемый сигнал (отраженный) являются непрерывными, они существуют одновременно и совпадают по частоте.

3.1.1. Принцип действия

Принцип действия металлоискателей типа "передача-прием" заключается в регистрации сигнала, отраженного (или, как говорят, переизлученного) металлическим предметом (мишенью), см. , стр.225-228. Отраженный сигнал возникает вследствие воздействия на мишень переменного магнитного поля передающей (излучающей) катушки металлоискателя. Таким образом, прибор данного типа подразумевает наличие как минимум двух катушек, одна из которых является передающей, а другая приемной.

Основная принципиальная проблема, которая решается в металлоискателях данного типа, заключается в таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит нулевой сигнал в приемной катушке (или в системе приемных катушек). Таким образом, необходимо предотвратить непосредственное воздействие излучающей катушки на приемную. Появление же вблизи катушек металлической мишени приведет к появлению сигнала в виде переменной э.д.с. в приемной катушке.

3.1.2. Схемы датчиков

Поначалу может показаться, что в природе существует всего два варианта взаимного расположения катушек, при котором не происходит непосредственной передачи сигнала из одной катушки в другую (см. рис.1 а и 16) - катушки с перпендикулярными и со скрещивающимися осями.

Рис. 1. Варианты взаимного расположения катушек датика металлоискателя по принципу "передача-прием ".

Более тщательное изучение проблемы показывает, что подобных различных систем датчиков металлоискателей может быть сколь угодно много, однако они будут содержать более сложные системы с количеством катушек больше двух, соответствующим образом включенных электрически. Например, на рис.1 в изображена система из одной излучающей (в центре) и двух приемных катушек, включенных встречно по сигналу, наводимому излучающей катушкой. Таким образом, сигнал на выходе системы приемных катушек в идеале равен нулю, так как наводимые в катушках э.д.с. взаимно компенсируются.

Особый интерес представляют системы датчиков с компланарными катушками (т.е. расположенными в одной плоскости). Это объясняется тем, что с помощью металлоискателей обычно проводят поиск предметов, находящихся в земле, а приблизить датчик на минимальное расстояние к поверхности земли возможно только в том случае, если его катушки компланарны. Кроме того такие датчики обычно компактны и хорошо вписываются в защитные корпуса типа "блина" или "летающей тарелки".

Основные варианты взаимного расположения компланарных катушек приведены на рис.2а и 26. В схеме на рис.2а взаимное расположение катушек выбрано таким, чтобы суммарный поток вектора магнитной индукции через поверхность, ограниченную приемной катушкой, равнялся нулю. В схеме рис.26 одна из катушек (приемная) скручена в виде "восьмерки", так что суммарная э.д.с., наводимая на половинки витков приемной катушки, расположенные в одном крыле "восьмерки", компенсирует аналогичную суммарную э.д.с., наводимую в другом крыле "восьмерки".


Рис. 2. Компланарные варианты взаимного расположения катушек металлоискателя по принципу "передача-прием ".

Возможны и другие разнообразные конструкции датчиков с компланарньми катушками, например рис.2в. Приемная катушка расположена внутри излучающей. Наводимая в приемной катушке э.д.с. компенсируется специальным трансформаторным устройством, отбирающим часть сигнала излучающей катушки.

3.1.3.1. Система катушек с перпендикулярными осями

Рассмотрим более подробно взаимодействие датчика металлоискателя с металлической мишенью на примере системы катушек с перпендикулярными осями, рис.1 а. Для простоты рассмотрим систему с катушками, продольными размерами которых можно пренебречь. Будем в дальнейшем счи тать, что излучающая и приемная катушки представляют собой круглые бесконечно тонкие рамки (см. рис.3). Для такой рамки вектор магнитного момента при протекании тока I имеет вид:

Рис.3. Модель излучающей катушки.

Индукция магнитного поля, создаваемого тауой рамкой на большом расстоянии г от ее центра (см. рис.4), составляет:

Рис. 4. Компоненты вектора индукции магнитного поля излучающей катушки.

полагая,что r>>Ц S , а индексы "n" и "t " обозначают соответственно нормальную и тангенциальную составляющие вектора магнитной индукции.

Рассмотрим взаимодействие излучающей рамки, приемной рамки и объекта в случае катушек с перпендикулярными осями (см. рис.5).

Рис. 5. Взаимное расположение катушек датчика металлоискателя и объекта (мишени).

Угол между осью симметрии системы катушек и вектором индукции поля В излучающей катушки равен 2р, так как силовые линии вследствие соотношений (1.2) являются окружностями, и ввиду допущения о малых размерах катушек:


где L - так называемая база датчика металлоискателя (см. рис.5).

3.1.3.2. Отражение сигнала за счет проводимости объекта

Проводящий металлический объект, размеры которого пока будем также считать небольшими, по крайней мере, не превосходящими r и r" (см. рис.5), с точки зрения переизлучения магнитного поля, можно представить в виде эквивалентной рамки с токомI*, вектор магнитного момента которой Рm* практически параллелен вектору индукции излучающей катушки В.

Величина Рm* зависит от размеров проводящего объекта, его проводимости, от индукции поля в точке расположения объекта, от частоты излучаемого поля. Индукция поля переизлучения имеет в центре приемной катушки ненулевую составляющую Во в направлении вектора нормалиns ", что приводит к появлению в этой катушке э.д.с., пропорциональной указанной составляющей:


Рис. 6. К расчету магнитного момента эквивалентного шара.

Для того, чтобы вычислить магнитный момент эквивалентной рамкиРm*, необходимо взять интеграл по всему объему проводящего объекта так, чтобы просуммировать вклады всех элементарных кольцевых токов, наведенных полем излучающей катушки, в итоговую величину Рm*. Для простоты будем считать, что магнитное поле по всему объему проводящего объекта однородно, то есть он удален на значительное расстояние от излучающей катушки. Чтобы не возникало проблем с ориентацией объекта, будем пока считать, что он имеет форму однородного шара (см. рис.б). Считая, что проводящий объект удален на значительное расстояние и от приемной катушки, можно записать:

Пренебрегая явлением самоиндукции, влияние которого будет рассмотрено ниже, получаем:


Чтобы учесть явление самоиндукции, предположим для простоты, что переизлученное поле однородновнутри объекта-мишени и, исходя из величины магнитного момента (1.7), составляет:

Подставив в выражение (1.7) В -В"внутр вместо В, получим по-прежнему пропорциональную зависимость Рm* отВ, но с несколько иным коэффициентом K1:


Составляющая индукции в центре приемной катушки:


В системе декартовых координат с началом в середине базы системы катушек (см. рис.7) последнее выражение принимает вид:


Введем нормированные координаты:



Определим с точностью до знака э.д.с., наводимую в приемной катушке:

где So - площадь сечения приемной катушки, N - количество ее витков.

где S - площадь сечения излучающей катушки, I - суммарный ток всех ее витков.

В трехмерном пространстве, когда плоскость XOY не перпендикулярна плоскости приемной рамки,

Рис. 7. Система координат.

Рис.8. Ориентация объекта по крену.

3.1.3.3.Отражение сигнала за счет ферромагнитных свойств объекта

Ферромагнитный объект, размеры которого будем считать также небольшими, по крайней мере, не превосходящими r и rў (см. рис.5), с точки зрения искривления магнитного поля, можно представить в виде эквивалентной рамки с током I*, вектор магнитного момента которойРm*практически параллелен вектору индукции излучающей катушки В.

Величина Рm* зависи т о т размеров ферромагнитного объекта, его магнитной проницаемости, от индукции поля в точке расположения объекта. Для того, чтобы вычислить магнитный момент эквивалентной рамки Рm*, необходимо взять интеграл по всему объему ферромагнитного объекта так, чтобы просуммировать вклады всех амперовых токов, возникающих в ферромагнетике под действием внешнего поля излучающей катушки. Для шарового однородного объекта получим:


где В - индукция магнитного поля, m - магнитная проницаемость материала объекта, R - радиус объекта - шара.

Все выражения, полученные выше для проводящего объекта, останутся в силе, если в них для данного случая положить:


3.1.3.4.Суперпозиция проводящих и ферромагнитных свойств объекта

Учет одновременно электропроводных и ферромагнитных свойств объекта в виде шара приводит к следующему значению коэффициента K1:


Нормирующий коэффициент К4 , входящий в выражение для напряжения в приемной катушке, составляет:

Численная оценка (1.23) показывает, например, что модули слагаемых в выражении при типовой частоте излучаемого поля 10(кГц) становятся соизмеримы при радиусе шарового объекта порядка 1(см) и при условии наличия у объекта ферромагнитных свойств. Кроме того, зависимость первого слагаемого от оператора Лапласа говорит о том, что фаза отраженного сигнала будет изменяться в зависимости от соотношения у объекта - мишени электропроводных и ферромагнитных свойств, а также от проводимости материала и размеров объекта. На этом явлении основан принцип действия дискриминаторов современных металлоискателей, то есть электронных устройств, позволяющих по фазовому сдвигу отраженного от объекта сигнала оценить свойства объекта (с определенной вероятностью даже тип металла).

3.1.3.5.Учет формы объекта

Полученные ранее выражения, как указывалось, были справедливы только для формы объекта - мишени в виде однородного шара. Очевидно, что воздействие объектов более сложной формы можно свести к воздействию некоторого эквивалентного шара с радиусом Rэкв.

Наведенное в приемной катушке напряжение, обусловленное проявлением только ферромагнитных свойств, для шарового объекта пропорционально его объему (см. выражение (1.22)). Поэтому, для не слишком протяженных объектов более сложной формы, в первом приближении, можно считать эквивалентным такой шар, объем которого совпадает с объемом ферромагнетика у объекта сложной формы. Для этого случая:

где V - объем ферромагнетика.

С напряжением, наведенным в приемной катушке за счет переизлучения от проводящего объекта, ситуация более сложная. В случае больших объектов с хорошей электропроводностью выражение (1.9) и соответственно наведенное в приемной катушке напряжение также пропорционально объему объекта (то естьR^3) и радиус эквивалентного шара также вычисляется по формуле (1.25). В случае небольших объектов с плохой электропроводностью подход иной. В этом случае общее выражение (1.9) вырождается в частный случай (1.8). Рассмотрим вначале влияние шаровой полости с радиусом Rп внутри шарового объекта на Rэкв. Воспользовавшись принципом суперпозиции, представим результат воздействия шарового объекта с полостью как разность результатов воздействия сплошного шара и шара с радиусом Rп. В соответствии с (1.8), имеет место соотношение:


На рис.9 приведены графики зависимости R/Rэкв от R/D R для полого слабоэлектропроводного и для полого ферромагнитного шара. Из графика видно, что для не

Рис.9. Влияние толщины стенки полого шара на эквивалентный радиус.

слишком тонкостенных шаров из слабопроводящего материала Rэкв» R. Следовательно, в отличие от ферромагнитного шара и от шара высокой проводимости, для слабопроводящего шара, в первом приближении, безразлично сплошной он или полый. Его влияние на процесс переизлучения определяется, в основном, линейным размером, то есть R. Поэтому, в случае не слишком протяженных плохопроводящих объектов более сложной формы, в том числе и полой, в первом приближении, можно считать эквивалентным такой шар, радиусRэкв которого равен половине среднего характерного размера объекта.

Приведенный выше вывод хорошо подтверждается на практике в виде существенного отклика металлоискателя от ничтожных по массе обрывков металлической алюминиевой фольги, которая практически попадается везде, где оставила свой след современная цивилизация.

3.1.3.6.Система катушек со скрещенными осями


Рис. 10. Ориентация датчика по крену.

Вид вдоль оси датчика металлоискателя при таком расположении катушек приведен на рис.10. Для расчета такой схемы удобно воспользоваться принципом суперпозиции и разложить вектор магнитного момента излучающей катушки и площадь приемной катушки на вертикальную и горизонтальную составляющие (проекции, см. рис.11).

Для горизонтальной составляющей, проекция индукции поля в приемной катушке Вонбудет попрежнему определяться соотношением (1.4). Однако, иная ориентация магнитного момента дает (с точностью до знака) результат:

где К2 определяется по формуле (1.11).

Вертикальная составляющая индукции поля в приемной катушкеBov перпендикулярна векторамr и r" и не зависит в явном виде от углов g и b :

Рис.11. Разложение магнитного момента и площади приемной катушки на составляющие.

ЭДС в приемной катушке Uo , с точностью до знака, составляет:

Отсюда получаем:

В декартовой системе координат с началом в середине базы системы катушек (см. рис.5) получим:

Введя нормированные координаты (1.14), получим:


где К4 вычисляется по формуле (1.19) или (1.24).

3.1.4. Практические соображения

Чувствительность металлоискателя зависит, в первую очередь от его датчика. Для рассмотренных вариантов датчиков чувствительность определяется формулами (1.20) и (1.33). При оптимальной для каждого случая ориентации ориентации датчика на объект по углу крена y, она определяется одним и тем же коэффициентом K4 и функциями нормированных координат F(X,Y) иG(X,Y). Для сравнения, в квадрате ХО [-4,4], YО [-4,4], модули этих функций приведены в виде аксонометрического набора сечений в логарифмическом масштабе на рис.12 и рис.13.

Первое, что бросается в глаза - это ярко выраженные максимумы вблизи точек расположения катушек датчика (0,+1) и (0,-1). Максимумы функций F(X,Y) иG(X,Y) не представляют практического интереса и для удобства сравнения функций обрезаны по уровню 0(дБ). Из рисунков и из анализа функций F(X,Y) иG(X,Y) также видно, что в указанном квадрате модуль функции F практически везде немного превосходит модуль функции G, за исключением самых удаленных точек по углам квадрата и за исключением узкой области вблизи Х=0, где у функции F имеет место "овраг".

Асимптотическое поведение указанных функций вдали от начала координат можно проиллюстрировать при Y=0. Оказывается, что модуль функции F убывает с расстоянием пропорционально х^(-7), а модуль функции G - пропорционально х^(-6). К сожалению, преимущество функции G по чувствительности проявляется лишь на больших расстояниях, превышающих практический радиус действия


Рис. 12. График функции F(X,Y).


Рис.13. График функции G(X,Y).

металлоискателя. Одинаковые значения модулей F и G получаются при Х» 4,25.

Очень важное практическое значение имеет "овраг" функцииF. Во-первых, он свидетельствует о том, что датчик системы катушек с перпендикулярными осями имеет минимальную (теоретически нулевую) чувствительность к металлическим предметам, расположенным на его продольной оси. Естественно, к этим предметам относятся и многие элементы конструкции самого датчика. Следовательно, отраженный от них бесполезный сигнал будет намного меньше, чем у датчика системы катушек со скрещивающимися осями. Последнее очень важно, учитывая, что отраженный сигнал от металлических элементов самого датчика может на несколько порядков превосходить полезный сигнал (ввиду близости этих элементов к катушкам датчика). Дело не в том, что бесполезный сигнал от металлических элементов конструкции датчика трудно скомпенсировать. Основная сложность заключается в малейших изменениях этих сигналов, которые обычно вызываются тепловыми и особенно механическими деформациями указанных элементов. Эти малейшие изменения могут быть уже сопоставимы с полезным сигналом, что приведет к неверным показаниям или ложным срабатываниям прибора.Во-вторых, если с помощью металлоискателя системы катушек с перпендикулярными осями некоторый небольшой объект уже обнаружен, то направление его точного местонахождения может быть легко "запеленговано" по нулевому значению сигнала металлоискателя при точной ориентации его продольной оси на объект (при любых ориентациях по крену). Учитывая, что площадь "захвата" датчика при поиске может составлять несколько квадратньк метров, последнее качество сис темы катушек с перпендикулярными осями весьма полезно на практике (меньше бесполезных раскопок).

Следующая особенность графиков функцийF(X,Y) и G(X,Y) - наличие кольцеобразного "кратера" нулевой чувствительности, проходящего через центры катушек (окружность единичноо радиуса с центром в точке (0,0)). На практике эта особенность позволяет определять расстояние до небольших объектов. Если обнаружится, что на некотором конечном расстоянии отраженный сигнал зануляется (при оптимальной ориентации по крену) - значит, расстояние до объекта составляет половину базы прибора, то есть величину L/2.

Необходимо также отметить, чтодиаграммы направленности по углу крена y для датчиков металлоискателей с различным взаимным расположением катушек также различаются. На рис.14б приведена диаграмма направленности прибора с перпендикулярньми осями у катушек, а на рис.14а - со скрещивающимися. Очевидно, что вторая диаграмма более предпочтительна, так имеет меньшее количество зон нечувствительности по крену и меньшее количество лепестков.

Для того, чтобы оценить зависимость наведенного в приемной катушке напряжения от параметров металлоискателя и объекта, надо проанализировать выражение (1.19) для коэффициента К4 . Наведенное в приемной катушке напряжение пропорционально (L/2)^6. На величину L/2 нормируются и аргументы функций F и G, убывание которых происходит с 6-й - 7-й степенью расстояния. Поэтому, в первом приближении, при прочих равных условиях,чувствительность металлоискателя не зависит от его базы.


Рис.14. Диаграммы направленности по крену датчиков систем катушек:

Со скрещивающимися осями (а)

С перпендикулярными осями (б).

Для того, чтобы проанализировать селективность металлоискателя, то есть его способность различать объекты, изготовленные из различных металлов или сплавов, необходимо обратиться к выражению (1.23). Металлоискатель может различать объекты по фазе отраженного сигнала. Для того, чтобы разрешающая способность прибора по типу ме таллов была максимальной, необходимо соответствующим образом выбрать частоту сигнала излучающей катушки, так, чтобы фаза отраженного от объектов сигнала составляла около 45°. Это - середина диапазона возможных изменений фазы первого слагаемого выражения (1.23), и там крутизна фазочастотной характеристики максимальна. Второе слагаемое выражения (1.23) считаем нулевым, так как при поиске в первую очередь нас интересует селективность по цветным металлам - неферромагнетикам. Естественно, оптимальный выбор частоты сигнала подразумевает знание типового размера предполагаемых объектов. Практически во всех зарубежных промышленных металлоискателях в качестве такого размера заложен размер монеты. Оптимальная частота составляет:


При типовом диаметре монеты 25(мм) ее объем составляет около 10^(-6) (м^3), что по формуле (1.25) соответствует эквивалентному радиусу около 0,6(см). Отсюда получаем оптимальное значение частоты около 1(кГц) при проводимости материала монеты 20(н0мЧ м). В промышленных приборах частота обычно на порядок выше (по технологическим соображениям).

3.1.5. Выводы

1. По мнению автора, система катушек с перпендикулярными осями предпочтительнее для поиска кладов и реликвий, чем система катушек со скрещивающимися осями. При прочих равных условиях, первая система имеет чувствительность немного выше. Кроме того, с ее помощью гораздо проще определить ("запеленговать") точное направление, в котором следует искать обнаруженный объект.

2. Рассмотренные системы катушек имеют важное свойство, позволяющее оценивать расстояние до небольших объектов по занулению отраженного сигнала при расстоянии до объекта, равном половине базы.

3. При прочих равных условиях (размеры и число витков катушек, чувствительность приемного тракта, величина тока и его частота в излучающей катушке), чувствительность металлоискателя по принципу "передача-прием" практически не зависит от его базы, то есть от расстояния между катушками.

3.2 МЕТАЛЛОИСКАТЕЛЬ НА БИЕНИЯХ

Термин "металлоискатель на биениях" является отголоском терминологии, принятой в радиотехнике еще со времен первых супергетеродинных приемников. Биениями называется явление, наиболее заметно проявляющееся при сложении двух периодических сигналов с близкими частотами и приблизительно одинаковыми амплитудами и заключающееся в пульсации амплитуды суммарного сигнала. Частота пульсации равна разности частот двух складываемых сигналов. Пропустив такой пульсирующий сигнал через выпрямитель (детектор), можно выделить сигнал разностной частоты. Такая схемотехника долгое время была традиционной, однако в настоящее время, ввиду развития синхронных детекторов, обычно не используется ни в радиотехнике, ни в металлоискателях, хотя термин "на биениях" остался до сих пор.

3.2.1. Принцип действия

Принцип действия металлоискателя на биениях очень прост и заключается в регистрации разности частот от двух генераторов - один из которых является стабильным по частоте, а другой содержит датчик - катушку индуктивности в своей частотозадающей цепи. Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению его параметров и как следствие, к изменению частоты соответствующего генератора. Это изменение, как правило очень мало, однако изменениеразности частот двух генераторов уже существенно и может быть легко зарегистрировано.

Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны или через громкоговоритель, и кончая цифровыми способами измерения частоты.

3.2.2. Теоретические соображения

Рассмотрим подробнее датчик металлоискателя на биениях, состоящий из одной катушки (см. рис.15).


Рис. 15. Взаимодействие однокатушечного датчика металлоискателя с объектом.

Индукция магнитного поля в центре катушки составляет:


где Pm - магнитный момент, создаваемый током катушки I, R0 - радиус катушки, S - площадь катушки.

За счет взаимодействия с проводящим и/или ферромагнитным объектом возникает добавочная компонента индукции. Так как механизм ее появления точно такой же, как и в рассмотренном ранее случае металлоискателя по принципу "передача - прием", можно воспользоваться результатами предыдущего раздела и записать для добавочной компоненты индукции:

где K1 - коэффициент, вычисляемый по формуле (1.8), (1.9) или (1.23).

Так как коэффициент K1 - функция комплексная, то и относительное изменение индукции можно обозначить как функцию оператора Лапласа:

Таким образом, полное сопротивление катушки датчика металлоискателя (без учета омического сопротивления провода и межвитковой емкости) можно представить как:

где L - индуктивность катушки без влияния объекта.

Под воздействием объекта меняется полное сопротивление катушки. В металлоискателях на биениях это изменение оценивается по изменению резонансной частоты колебательного LC- контура, образованного катушкой датчика и конденсатором.

3.2.3. Практические соображения

Чувствительность металлоискателя на биениях определяется выражениями (1.36)-(1.38) и зависит, кроме того от параметров преобразования изменения полного сопротивления датчика в частоту. Как уже отмечалось, обычно преобразование заключается в получении разностной частоты стабильного генератора и генератора с катушкой датчика в частотозадающей цепи. Поэтому, чем выше будут частоты этих генераторов, тем больше будет разность частот в отклик на появление металлической мишени вблизи датчика. Регистрация небольших отклонений частоты представляет определенную сложность. Так, на слух можно уверенно зарегистрировать уход частоты тонального сигнала не менее 10(Гц). Визуально, по миганию светодиода можно зарегистрировать уход частоты не менее 1(Гц). Другими способами можно добиться регистрации и меньшей разности частот, однако эта регистрация потребует значительного времени, что неприемлемо для металлоискателей, которые всегда работают в реальном масштабе времени.

Селективность по металлам на таких частотах, весьма далеких от оптимальной (1.34), проявляется очень слабо. Кроме того, по сдвигу частоты генератора определить фазу отраженного сигнала практически невозможно. Поэтому селективность у металлоискателя на биениях отсутствует.

Положительной для практики стороной является простота конструкции датчика и электронной части металлоискателя на биениях. Такой прибор может быть очень компактным. Им удобно пользоваться, когда что-либо уже обнаружено более чувствительным прибором. Если обнаруженный предмет небольшой и находится достаточно глубоко в земле, то он может "затеряться", переместиться в ходе раскопок. Чтобы по многу раз не "просматривать" громоздким чувствительным металлоискателем место раскопок, желательно на завершающей стадии контролировать их ход компактным прибором малого радиуса действия, которым можно более точно узнать местонахождение предмета.

3.2.4. Выводы

1 . Металлоискатели на биениях имеют меньшую чувствительность, чем металлоискатели по принципу "передача-прием".

2. Селективность по типам металлов отсутствует.

3.3. ОДНОКАТУШЕЧНЫЙ МЕТАЛЛОИСКАТЕЛЬ ИНДУКЦИОННОГО ТИПА

3.3.1. Принцип действия

Слово "индукционный" в названии металлоискателей данного типа полностью раскрывает принцип их работы, если вспомнить смысл слова "inductio" (лат.) - наведение. Прибор данного типа имеет в составе датчика одну катушку любой удобной формы, возбуждаемую переменным сигналом. Появление вблизи датчика металлического предмета вызывает появление отраженного (переизлученного сигнала), который "наводит" в катушке дополнительный сигнал электрический. Остается этот дополнительный сигнал только выделить.

Металлоискатель индукционного типа получил право на жизнь, главным образом, из-за основного недостатка приборов по принципу "передача-прием" - сложности конструкции датчиков. Эта сложность приводит либо к высокой стоимости и трудоемкости изготовления датчика, либо к его недостаточной механической жесткости, что обуславливает появление ложных сигналов при движении и снижает чувствительность прибора. Если задаться целью устранить у приборов по принципу "передача-прием" этот недостаток, то можно придти к необычному выводу - излучающая и приемная катушки у металлоискателя должны быть объединены в одну! В самом деле, весьма нежелательные перемещения и изгибы одной катушки относительно другой в данном случае отсутствуют, так как катушка только одна и она одновременно и излучающая, и приемная. Налицо также предельная простота датчика. Платой за эти преимущества является необходимость выделения полезного отраженного сигнала на фоне значительно большего сигнала возбуждения излучающей/приемной катушки.

Принципиальная схема входной части

Выделить отраженный сигнал можно, если вычесть из электрического сигнала, присутствующего в катушке датчика, сигнал той же формы, частоты, фазы и амплитуды, что и сигнал в катушке при отсутствии металла вблизи. Как это можно реализовать одним из способов, показано в виде структурной схемы на рис. 16.


Рис.16. Структурная схема входного узла индукционного металлоискателя

Генератор вырабатывает переменное напряжение синусоидальной формы с постоянной амплитудой и частотой. Преобразователь "напряжение-ток" (ПНТ) преобразует напряжение генератора Uг в ток Iг, который задается в колебательный контур датчика. Колебательный контур состоит из конденсатора С и катушки L датчика. Его резонансная частота равна частоте генератора. Коэффициент преобразования ПНТ выбирается таким, чтобы напряжение колебательного контура Uд равнялось напряжению генератора Uг (в отсутствие металла вблизи-датчика). Таким образом, на сумматоре происходит вычитание двух сигналов одинаковой амплитуды, а выходной сигнал - результат вычитания - равен нулю. При появлении металла вблизи датчика возникает отраженный сигнал (иными словами, меняются параметры катушки датчика) и это приводит к изменению напряжения колебательного контура Uд. На выходе появляется сигнал, отличный от нуля.

На рис.16 приведен лишь простейший вариант одной из схем входной части металлоискателей рассматриваемого типа, как простейший. Вместо ПНТ в данной схеме в принципе возможно использование токозадающего резистора. Могут быть использованы различные мостовые схемы для включения катушки датчика, сумматоры с различными коэффициентами передачи по инвертирующему и неинвертирующему входам, частичное включение колебательного контура, и т.д. и т.п.

В схеме на рис. 16 в качестве датчика используется колебательный контур. Это сделано для простоты, чтобы получить нулевой сдвиг фаз между сигналами Uг и Uд (контур настроен на резонанс). Можно отказаться от колебательного контура с необходимостью точной настройки его на резонанс и использовать в качестве нагрузки ПНТ только катушку датчика. Однако, коэффициент передачи ПНТ для этого случая должен быть комплексным, чтобы скорректировать сдвиг фазы приблизительно на 90°, возникающий из- за индуктивного характера нагрузки ПНТ.

3.3.2. Теоретические соображения

Как уже отмечалось, металлоискатель индукционного типа можно представить как некоторый предельный случай металлоискателя по принципу "передача-прием", когда излучающая и приемная катушка совпадают. Поэтому многими результатами раздела 1.1 можно воспользоваться и для металлоискателя индукционного типа. Кроме того, от металлоискателя на биениях индукционный металлоискатель отличается только способом регистрации отраженного сигнала, поэтому и некоторые результаты раздела 1.2 также будут справедливы для прибора индукционного типа.

Взаимодействие катушки металлоискателя индукционного типа с металлическим объектом может проиллюстрировать рис.15. Отраженный сигнал можно оценить величиной индукции магнитного поля (1.36). В отличие от приборов по принципу "передача-прием", величина отраженного сигнала при допущении (1.3) зависиттолько от расстояния между объектом и датчиком, и не зависит от ориентации датчика на объект.

Дополнительное напряжение, наведенное в катушке датчика отраженным сигналом, вычисляется по формуле (1.17), где индукция отраженного сигнала равна (1.36). Без учета знака это напряжение составляет:

где p - оператор Лапласа, I - ток в катушке, r - расстояние между датчиком и объектом, S - площадь катушки, N - число ее витков, R - эквивалентный радиус объекта, KS - коэффициент, вычисляемый по формуле (1.23).

3.3.3. Практические соображения

Отклик прибора по напряжению на металлический объект, в соответствии с формулой (1.39), обратно пропорционален шестой степени расстояния. То есть, он практически такой же, как и у металлоискателей по принципу "передача-прием". Аналогичен и принцип регистрации отраженного сигнала. Поэтому теоретическая чувствительность индукционного металлоискателя такая же, как и у приборов по принципу "передача-прием".

Теоретические соображения по поводу селективности, приведенные в разделе 1.1 для металлоискателя по принципу "передача-прием", справедливы и для индукционного металлоискателя. Селективность определяется коэффициентом (1.23), входящим в формулу (1.39) для напряжения полезного отраженного сигнала.

Из конструктивных особенностей следует отметить простоту конструкции датчика металлоискателя. Платой за простоту, как указывалось выше, является необходимость.выделения малого полезного сигнала на фоне большого электрического сигнала возбуждения катушки датчика металлоискателя. Если учесть, что соотношение амплитуд этих сигналов может достигать 105...106, то ясно, что для практики это не простая, хотя и вполне разрешимая задача. Сложность решения этой задачи заключается в том, что катушка датчика металлоискателя реагирует не только на полезный отраженный сигнал, но и на любое изменение ее параметров. К счастью, чувствительность к механическим деформациям у датчика индукционного металлоискателя намного ниже, чем у приборов по принципу "передачаприем". Однако, возникает специфическая для индукционного металлоискателя проблема температурной чувствительности датчика. Дело в том, что омическое сопротивление провода (обычно медного), которым намотана катушка датчика, практически линейно растет с ростом температуры. Вызванные неизбежными колебаниями температуры, эти сравнительно медленные изменения полного сопротивления и напряжения датчика очень невелики сами по себе, однако сопоставимы или даже больше, чем от воздействия полезного сигнала. Таким образом, актуальной становится задача компенсации температурного дрейфа полного сопротивления катушки датчика металлоискателя.

3.4. ДРУГИЕ ТИПЫ МЕТАЛЛОИСКАТЕЛЕЙ

Первый вопрос, который возникает у человека после ознакомления с недостатками и ограничениями тех или иных металлоискателей, звучит приблизительно так: "Какие существуют другие принципы и приборы на их основе для дистанционного обнаружения металлических предметов?" Вопрос закономерен, однако приводимый ниже ответ на него, вероятно, не сильно обрадует любознательного читателя.

Импульсные металлоискатели

В рассмотренных ранее трех типах электронных металлоискателей отраженный сигнал отделяется от излучаемого. либо геометрически - за счет взаимного расположения приемной и излучающей катушки, либо с помощью специальных схем компенсации. Очевидно, что может существовать и временной способ разделения излучаемого и отраженного сигналов. Такой способ широко используется, например, в импульсной эхо- и радиолокации. При локации механизм задержки отраженного сигнала обусловлен значительным временем распространения сигнала до объекта и обратно. Однако, применительно к металлоискателям, таким механизмом может быть и явление самоиндукции в проводящем объекте. После воздействия импульса магнитной индукции в проводящем объекте возникает и некоторое время поддерживается вследствие явления самоиндукции затухающий импульс тока, обуславливающий задержанный по времени отраженный сигнал. Таким образом, может быть предложена другая схема металлоискателя, принципиально отличающаяся от рассмотренных ранее по способу разделе ния сигналов. Такой металлоискатель получил название импульсного. Он состоит из генератора импульсов тока, приемной и излучающей катушек, устройства коммутации и блока обработки сигнала.

Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка - нагрузка генератора импульсов имеет ярко выраженный индуктивный характер, на фронтах импульсов у генератора возникают перегрузки в виде всплесков напряжения. Такие всплески могут достигать по амплитуде сотен (!) вольт, однако использование защитных ограничителей недопустимо, так как оно привело бы к затягиванию фронта импульса тока и магнитной индукции и, в конечном счете, к усложнению отделения отраженного сигнала.

Приемная и излучающая катушки могут располагаться друг относительно друга достаточно произвольно, так как прямое проникновение излучаемого сигнала в приемную катушку и действие на нее отраженного сигнала разнесены по времени. В принципе, одна катушка может выполнять роль как приемной, так и излучающей, однако в данном случае гораздо сложнее будет развязать высоковольтные выходные цепи генератора импульсов тока и чувствительные входные цепи.

Устройство коммутации призвано произвести упомянутое выше разделение излучаемого и отраженного сигналов. Оно блокирует входные цепи прибора на определенное время, которое определяется временем действия импульса тока в излучающей катушке, временем разрядки катушки и временем, в течение которого возможно появление корот ких откликов прибора от массивных слабопроводящих объектов типа грунта. По истечении же этого времени устройство коммутации должно обеспечить беспрепятственную передачу сигнала с приемной катушки на блок обработки сигнала.

Блок обработки сигнала предназначен для преобразования входного электрического сигнала в удобную для восприятия человеком форму. Он может быть сконструирован на основе решений, используемых в металлоискателях других типов.

К недостаткам импульсных металлоискателей следует отнести сложность реализации на практике дискриминации объектов по типу металла, сложность аппаратуры генерации и коммутации импульсов тока и напряжения большой амплитуды, высокий уровень радиопомех.

Магнитометры

Магнитометрами называется обширная группа приборов, предназначенных для измерения параметров магнитного поля (например, модуля или составляющих вектора магнитной индукции). Использование магнитометров в качестве металлоискателей основано на явлении локального искажения естественного магнитного поля Земли ферромагнитными материалами, например железом. Обнаружив с помощью магнитометра отклонение от обычного для данной местности модуля или направления вектора магнитной индукции поля Земли, можно с уверенностью утверждать о наличии некоторой магнитной неоднородности (аномалии), которая может быть вызвана железньм предметом.

По сравнению с рассмотренными ранее металлоискателями, магнитометры имеют гораздо большую дальность обнаружения железных предметов. Очень впечатляет информация о том, что с помощью магнитометра можно зарегистрировать мелкие обувные гвозди от ботинка на расстоянии 1(м), а легковой автомобиль - на расстоянии 10(м)! Такая большая дальность обнаружения объясняется тем, что аналогом излучаемого поля обычных металлоискателей для магнитометров является однородное магнитное поле Земли, поэтому отклик прибора на железный предмет обратно пропорционален не шестой, а третьей степени расстояния.

Принципиальным недостатком магнитометров является невозможность обнаружения с помощью них предметов из цветных металлов. Кроме того, даже если нас интересует только железо, применение магнитометров для поиска затруднительно. Во-первых, в природе существует большое разнообразие естественных магнитных аномалий самого различного масштаба (отдельные минералы, залежи минералов и т.п.) Во-вторых, магнитометры обычно громоздки и не предназначены для работы в движении.

Для иллюстрации бесполезности магнитометров при поиске кладов и реликвий можно привести такой пример. С помощью обычного компаса, который по сути является простейшим магнитометром, можно зарегистрировать обычное железное ведро на расстоянии около 0,5(м), что само по себе является неплохим результатом. Однако (!), попробуйте с помощью компаса найти то же ведро, спрятанное под землей, в реальных условиях!

Радиолокаторы

Общеизвестен факт, что с помощью современных радиолокаторов можно обнаружить такой объект, как самолет, на расстоянии нескольких сотен километров. Возникает вопрос: неужели современная электроника не позволяет создать компактное устройство, пусть намного уступающее по дальности обнаружения современным стационарным радиолокаторам, но позволяющее обнаруживать интересующие нас предметы (см. название книги)? Ответом является ряд публикаций, в которых такие устройства описаны.

Типичным для них является применение достижений современной микроэлектроники СВЧ, компьютерной обработки полученного сигнала. Использование современных высоких технологий практически делает невозможным самостоятельное изготовление этих устройств. Кроме того, большие габариты пока не позволяют их широко применять в полевых условиях.

К преимуществам радиолокаторов следует отнести принципиально более высокую дальность обнаружения отраженный сигнал в грубом приближении можно считать подчиняющимся законам геометрической оптики и его ослабление пропорционально не шестой и даже не третьей, а лишь второй степени расстояния.

3.3.4. Выводы

1. Индукционные металлоискатели сочетают в себе вы сокую чувствительность и селективность металлоискателей по принципу "передача-прием" и простоту конструкции датчика металлоискателей на биениях.

2. Актуальной становится задача компенсации темпера турного дрейфа параметров катушки датчика металлоискателя.