ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Нелинейные искажения. Коэффициент нелинейных искажений (КНИ, THD), коэффициент гармонических искажений (КГИ, Kг, THDr) – различные подходы к определению Что такое коэффициент нелинейных искажений

Коэффициент нелинейных искажений (КНИ) ​

Ирина Алдошина​

Все электроакустические преобразователи (громкоговорители, микрофоны, телефоны и др.), а также каналы передачи вносят свои искажения в передаваемый звуковой сигнал, то есть воспринимаемый звуковой сигнал всегда не идентичен оригиналу. Идеология создания звуковой аппаратуры, получившая в 60-е годы название High-Fidelity, «высокой верности» живому звуку, в значительной степени не достигла своей цели. В те годы уровни искажений звукового сигнала в аппаратуре были еще очень высокими, и казалось, что достаточно их снизить - и звук, воспроизведенный через аппаратуру, будет практически неотличим от исходного.

Однако, несмотря на успехи в конструировании и развитии технологии, которые привели к значительному снижению уровней всех видов искажений в аудиоаппаратуре, по-прежнему не составляет особого труда отличить натуральный звук от воспроизведенного. Именно поэтому в настоящее время в различных странах в научно-исследовательских институтах, университетах и фирмах-производителях в большом объеме проводятся работы по изучению слухового восприятия и субъективной оценки различных видов искажений. По результатам этих исследований публикуется множество научных статей и докладов. Практически на всех конгрессах AES представляются доклады по этой теме. Некоторые современные результаты, полученные за последние два-три года, по проблемам субъективного восприятия и оценке нелинейных искажений звукового сигнала в аудиоаппаратуре и будут представлены в данной статье.

При записи, передаче и воспроизведении музыкальных и речевых сигналов через аудиоаппаратуру возникают искажения временной структуры сигнала, которые могут быть разделены на линейные и нелинейные.

Линейные искажения изменяют амплитудные и фазовые соотношения между имеющимися спектральными компонентами входного сигнала и за счет этого искажают его временную структуру. Такого рода искажения субъективно воспринимаются, как искажения тембра сигнала, и поэтому проблемам их снижения и субъективным оценкам их уровня уделялось очень много внимания со стороны специалистов на протяжении всего периода развития звукотехники.

Требование к отсутствию линейных искажений сигнала в аудиоаппаратуре может быть записано в форме:

Y(t) = K·x(t - T), где x(t) - входной сигнал, y(t) - выходной сигнал.

Это условие допускает только изменение сигнала в масштабе с коэффициентом К и его сдвиг во времени на величину Т. Оно определяет линейную связь между входным и выходным сигналами и приводит к требованию, чтобы передаточная функция H(ω), под которой понимается частотно-зависимое отношение комплексных амплитуд сигнала на выходе и на входе системы при гармонических воздействиях, была постоянная по модулю и имела линейную зависимость аргумента (то есть фазы) от частоты | H(ω) | = К, φ(ω) = -T·ω. Поскольку функция 20·lg | H(ω) | называется амплитудно-частотной характеристикой системы (АЧХ), а φ(ω) - фазо-частотной характеристикой (ФЧХ), то обеспечение постоянного уровня АЧХ в воспроизводимом диапазоне частот (снижение ее неравномерности) в микрофонах, акустических системах и др. является главным требованием для улучшения их качества. Методы их измерений введены во все международные стандарты, например, IEC268-5. Пример АЧХ современного контрольного агрегата фирмы Marantz с неравномерностью 2 дБ показан на рисунке 1.


АЧХ контрольного монитора фирмы Marantz

Следует отметить, что такое снижение величины неравномерности АЧХ является огромным достижением в конструировании аудиоаппаратуры (например, контрольные мониторы, представленные на выставке в Брюсселе в 1956 году, имели неравномерность 15 дБ), которое стало возможным в результате применения новых технологий, материалов и методов проектирования.

Влияние неравномерностей АЧХ (и ФЧХ) на субъективно воспринимаемое искажение тембра звучания достаточно детально исследовано. Обзор основных полученных результатов постараемся сделать в дальнейшем.

Нелинейные искажения характеризуются появлением в спектре сигнала новых составляющих, отсутствующих в первоначальном сигнале, количество и амплитуды которых зависят от изменения входного уровня. Появление дополнительных составляющих в спектре обусловлено нелинейной зависимостью выходного сигнала от входного, то есть нелинейностью передаточной функции. Примеры такой зависимости показаны на рисунке 2.


Различные типы нелинейных передаточных функций в аппаратуре

Причиной нелинейности могут являться конструктивные и технологические особенности электроакустических преобразователей.

Например, в электродинамических громкоговорителях (рисунок 3) к числу основных причин относятся:


Конструкция электродинамического громкоговорителя

Нелинейные упругие характеристики подвеса и центрирующей шайбы (пример зависимости гибкости подвесов в громкоговорителе от величины смещения звуковой катушки показан на рисунке 4);


Зависимость гибкости подвеса от величины смещения звуковой катушки

Нелинейная зависимость смещения звуковой катушки от величины приложенного напряжения из-за взаимодействия катушки с магнитным полем и из-за тепловых процессов в громкоговорителях;
- нелинейные колебания диафрагмы при большой величине воздействующей силы;
- колебания стенок корпуса;
- эффект Доплера при взаимодействии различных излучателей в акустической системе.
Нелинейные искажения возникают практически во всех элементах звукового тракта: микрофонах, усилителях, кроссоверах, процессорах эффектов и т. д.
Представленная на рисунке 2 зависимость между входным и выходным сигналами (например, между приложенным напряжением и звуковым давлением для громкоговорителя) может быть аппроксимирована в виде полинома:
y(t) = h1·x(t) + h2·x2(t) + h3·x3(t) + h4·x4(t) + … (1).
Если на такую нелинейную систему подать гармонический сигнал, т. е. x(t) = A·sin ωt, то в выходном сигнале будут присутствовать компоненты с частотами ω, 2ω, 3ω, …, nω и т. д. Например, если ограничиться только квадратичным членом, то появятся вторые гармоники, т. к.
y(t) = h1·A·sin ωt + h2·(A sin ωt)² = h1·A·sin ωt + 0,5·h2·А²·sin 2ωt + const.
В реальных преобразователях при подаче гармонического сигнала могут появиться гармоники второго, третьего и более высоких порядков, а также субгармоники (1/n)·ω (рисунок 5).


Для измерения такого вида искажений наиболее широкое распространение получили методы измерений уровня дополнительных гармоник в выходном сигнале (обычно только второй и третьей).
В соответствии с международными и отечественными стандартами производится запись АЧХ второй и третьей гармоники в заглушенных камерах и измеряется коэффициент гармонических искажений n-порядка:
KГn = pfn / pср·100%
где pfn-- среднеквадратичное значение звукового давления, соответствующее n-гармонической составляющей. По нему рассчитывается общий коэффициент гармонических искажений:
Кг = (KГ2² + KГ3² +KГ4² +KГ5² + ...)1/2
Например, в соответствии с требованиями МЭК 581-7, для акустических систем класса Hi-Fi полный коэффициент гармонических искажений не должен превышать 2% в диапазоне частот 250…1000 Гц и 1% в диапазоне свыше 2000 Гц. Пример зависимости коэффициента гармонических искажений для низкочастотного громкоговорителя диаметром 300 мм (12") от частоты для разных значений входного напряжения, меняющегося от 10 до 32 В, показан на рисунке 6.


Зависимость КНИ от частоты для разных значений входного напряжения

Следует отметить, что слуховая система чрезвычайно чувствительна к наличию нелинейных искажений в акустических преобразователях. «Заметность» гармонических составляющих зависит от их порядка, в частности, к нечетным составляющим слух наиболее чувствителен. При многократном прослушивании восприятие нелинейных искажений обостряется, особенно при прослушивании отдельных музыкальных инструментов. Частотная область максимальной чувствительности слуха к этим видам искажений находится в пределах 1…2 кГц, где порог чувствительности составляет 1…2%.
Однако такой метод оценки нелинейности не позволяет учесть все виды нелинейных продуктов, возникающих в процессе преобразования реального звукового сигнала. В результате может быть ситуация, когда акустическая система с КНИ в 10% может субъективно оцениваться выше по качеству звучания, чем система с КНИ в 1%, из-за влияния высших гармоник.
Поэтому поиски других способов оценки нелинейных искажений и их корреляции с субъективными оценками все время продолжаются. Особенно актуально это в настоящее время, когда уровни нелинейных искажений значительно снизились и для дальнейшего их снижения необходимо знание реальных порогов слышимости, поскольку уменьшение нелинейных искажений в аппаратуре требует значительных экономических затрат.
Наряду с измерениями гармонических составляющих в практике проектирования и оценки электроакустической аппаратуры используются методы измерений интермодуляционных искажений. Методика измерений представлена ГОСТ 16122-88 и МЭК 268-5 и основана на подведении к излучателю двух синусоидальных сигналов с частотами f1 и f2, где f1 < 1/8·f2 (при соотношении амплитуд 4:1) и измерении амплитуд звукового давления комбинационных тонов: f2 ± (n - 1)·f1, где n = 2, 3.
Суммарный коэффициент интермодуляционных искажений определяется в этом случае как:
Ким = (ΣnКимn²)1/2
где Ким = / pcp.
Причиной возникновения интермодуляционных искажений служит нелинейная связь между выходным и входным сигналами, т. е. нелинейная передаточная характеристика. Если на вход такой системы подать два гармонических сигнала, то в выходном сигнале будут содержаться гармоники высших порядков и суммарно-разностные тоны различных порядков.
Вид выходного сигнала с учетом нелинейностей более высоких порядков показан на рисунке 5.


Продукты нелинейных искажений в громкоговорителях

Характеристики зависимости коэффициента интермодуляционных искажений от частоты для низкочастотного громкоговорителя со звуковыми катушками различной длины показаны на рисунке 7 (а - для более длинной катушки, б - для более короткой).


Зависимость коэффициента интермодуляционных искажений (IMD) от частоты для громкоговорителя с длинной (а) и короткой (б) катушкой

Как сказано выше, в соответствии с международными стандартами в аппаратуре измеряются только коэффициенты интермодуляционных искажений второго и третьего порядков. Измерения интермодуляционных искажений могут быть информативнее, чем гармонические, поскольку являются более чувствительным критерием нелинейности. Однако, как показали эксперименты, выполненные в работах Р. Геддса (доклад на 115 конгрессе AES в Нью-Йорке), четкой корреляции между субъективными оценками качества акустических преобразователей и уровнем интермодуляционных искажений установить не удалось - слишком большой разброс в полученных результатах (как видно из рисунка 8).


Связь субъективных оценок с величиной коэффициента интермодуляционных искажений (IMD)

В качестве нового критерия для оценки нелинейных искажений в электроакустической аппаратуре был предложен многотоновый метод, история и способы применения которого детально исследованы в работах А. Г. Войшвилло и др. (имеются статьи в JAES и доклады на конгрессах AES). В этом случае в качестве входного сигнала используется набор гармоник от 2-й до 20-й с произвольным распределением амплитуд и логарифмическим распределением частот в диапазоне от 1 до 10 кГц. Распределение фаз гармоник оптимизируется с целью минимизации пик-фактора многотонового сигнала. Общий вид входного сигнала и его временная структура показаны на рисунках 9а и 9б.


Спектральный (а) и временной (б) вид многотонового сигнала

В выходном сигнале выделяются гармонические и интермодуляционные искажения всех порядков. Пример таких искажений для громкоговорителя показан на рисунке 10.


Общие продукты нелинейных искажений при применении многотонового сигнала

Многотоновый сигнал по своей структуре гораздо ближе к реальным музыкальным и речевым сигналам, он позволяет выделить значительно больше различных продуктов нелинейных искажений (в первую очередь интермодуляционных) и лучше коррелирует с субъективными оценками качества звучания акустических систем. С увеличением числа составляющих гармоник данный метод позволяет получить все более детальную информацию, но при этом увеличиваются вычислительные затраты. Применение этого метода требует дальнейших исследований, в частности разработки критериев и допустимых норм на выделенные продукты нелинейных искажений с позиций их субъективных оценок.
Для оценки нелинейных искажений в акустических преобразователях используются и другие методы, например ряды Вольтера.
Однако все они не обеспечивают четкой связи между оценкой качества звучания преобразователей (микрофонов, громкоговорителей, акустических систем и др.) и уровнем нелинейных искажений в них, измеренных любыми из известных объективных методов. Поэтому представляет значительный интерес новый психоакустический критерий, предложенный в докладе Р. Геддса на последнем конгрессе AES. Он исходил из соображений, что любой параметр можно оценивать в объективных единицах, а можно и по субъективным критериям, например, температуру можно измерить в градусах, а можно в ощущениях: холодно, тепло, жарко. Громкость звука можно оценить по уровню звукового давления в дБ, а можно - в субъективных единицах: фон, сон. Поиск аналогичных критериев для нелинейных искажений и был целью его работы.
Как известно из психоакустики, слуховой аппарат является принципиально нелинейной системой, причем его нелинейность проявляется как на больших, так и на малых уровнях сигнала. Причинами нелинейности служат гидродинамические процессы в улитке уха, а также нелинейная компрессия сигнала за счет специального механизма удлинения внешних волосковых клеток. Это приводит к появлению субъективных гармоник и комбинационных тонов при прослушивании гармонических или суммарных гармонических сигналов, уровень которых может достигать 15…20% от уровня входного сигнала. Поэтому анализ восприятия продуктов нелинейных искажений, создаваемых в электроакустических преобразователях и каналах передачи, в такой сложной нелинейной системе, как слуховой аппарат, является серьезной проблемой.
Другое принципиально важное свойство слуховой системы - это эффект маскировки, заключающийся в изменении порогов слуха к одному сигналу в присутствии другого (маскера). Это свойство слуховой системы широко используется в современных системах сжатия звуковой информации при ее передаче по различным каналам (стандарты MPEG). Успехи, достигнутые в уменьшении объемов передаваемой информации за счет сжатия с использованием свойств слуховой маскировки, заставляют предположить, что эти эффекты имеют огромное значение также для восприятия и оценки нелинейных искажений.
Установленные законы слуховой маскировки позволяют утверждать, что:
- маскировка высокочастотных составляющих (находящихся выше частоты сигнала-маскера) происходит значительно сильнее, чем в сторону низких частот;
- маскировка сильнее проявляется для ближайших частот (локальный эффект, рисунок 11);
- с увеличением уровня сигнала-маскера зона его воздействия расширяется, она становится все более асимметричной, происходит ее сдвиг в сторону высоких частот.

Отсюда можно предположить, что при анализе нелинейных искажений в слуховой системе соблюдаются следующие правила:
- продукты нелинейных искажений выше основной частоты менее важны для восприятия (они лучше маскируются), чем низкочастотные компоненты;
- чем ближе к основному тону располагаются продукты нелинейных искажений, тем больше вероятность, что они станут незаметными и не будут иметь субъективного значения;
- дополнительные нелинейные компоненты, возникающие за счет нелинейности, могут быть гораздо важнее для восприятия при низких уровнях сигнала, чем при высоких. Это показано на рисунке 11.


Эффекты маскировки

Действительно, с повышением уровня основного сигнала зона его маскировки расширяется, и все больше продуктов искажений (гармоник, суммарных и разностных искажений и др.) попадает в нее. При низких уровнях эта зона ограничена, поэтому продукты искажений высоких порядков будут более слышимы.
При измерениях нелинейных продуктов на чистом тоне в преобразователях возникают, в основном, гармоники с частотой выше основного сигнала n f. Однако в громкоговорителях могут возникать и низкие гармоники с частотами (1/n)·f. При измерениях интермодуляционных искажений (как с помощью двух сигналов, так и с помощью многотоновых сигналов) возникают продукты искажений суммарно-разностные - как выше, так и ниже основных сигналов m·f1 ± n·f2.
Учитывая перечисленные свойства слуховой маскировки, можно сделать следующие выводы: продукты нелинейных искажений более высоких порядков могут быть более слышимы, чем продукты более низких порядков. Например, практика проектирования громкоговорителей показывает, что гармоники с номерами выше пятой, воспринимаются на слух гораздо неприятнее, чем вторая и третья, даже если их уровни гораздо меньше, чем у первых двух гармоник. Обычно их появление воспринимается как дребезжание и приводит к отбраковке громкоговорителей в производстве. Появление субгармоник с половинной и ниже частотами также сразу замечается слуховой системой как призвук, даже на очень малых уровнях.
Если порядок нелинейности низкий, то с увеличением уровня входного сигнала дополнительные гармоники могут быть замаскированы в слуховой системе и не восприниматься как искажения, что подтверждается практикой проектирования электроакустических преобразователей. Акустические системы с уровнем нелинейных искажений 2% могут достаточно высоко оцениваться слушателями. В то же время хорошие усилители должны иметь уровень искажений 0,01% и ниже, что, по-видимому, связано с тем, что акустические системы создают продукты искажений низких порядков, а усилители - гораздо более высоких.
Продукты нелинейных искажений, которые возникают на низких уровнях сигнала, могут быть гораздо более слышимыми, чем на высоких уровнях. Это, казалось бы, парадоксальное утверждение также может иметь значение для практики, поскольку нелинейные искажения в электроакустических преобразователях и трактах могут возникать и при малых уровнях сигналов.
Исходя из вышесказанных соображений, Р. Геддс предложил новый психоакустический критерий для оценки нелинейных искажений, который должен был удовлетворять следующим требованиям: быть чувствительнее к искажениям более высокого порядка и иметь большее значение для низких уровней сигнала.
Проблема состояла в том, чтобы показать, что этот критерий больше соответствует субъективному восприятию нелинейных искажений, чем принятые в настоящее время методы оценок: коэффициент нелинейных искажений и коэффициент интермодуляционных искажений на двухтоновом или многотоновом сигналах.
С этой целью была проведена серия субъективных экспертиз, организованная следующим образом: тридцать четыре эксперта с проверенными порогами слуха (средний возраст 21 год) участвовали в большой серии экспериментов по оценке качества звучания музыкальных отрывков (например, мужской вокал с симфонической музыкой), в которые были введены различные виды нелинейных искажений. Выполнено это было путем «свертки» испытываемого сигнала с нелинейными передаточными функциями, свойственными преобразователям различных типов (громкоговорителям, микрофонам, стереотелефонам и др.).
Вначале в качестве стимулов были использованы синусоидальные сигналы, выполнена их «свертка» с различными передаточными функциями и определен коэффициент гармонических искажений. Затем были использованы два синусоидальных сигнала и рассчитаны коэффициенты интермодуляционных искажений. Наконец, прямо по заданным передаточным функциям был определен вновь предложенный коэффициент Gm. Расхождения оказались очень значительными: например, для одной и той же передаточной функции КНИ равен 1%, Ким - 2,1%, Gm - 10,4%. Такое различие физически объяснимо, так как Ким и Gm учитывают гораздо больше продуктов нелинейных искажений высоких порядков.
Слуховые эксперименты были выполнены на стереотелефонах с диапазоном 20 Гц…16 кГц, чувствительностью 108 дБ, макс. SPL 122 дБ. Субъективная оценка ставилась по семибальной шкале для каждого музыкального фрагмента, от «много лучше», чем опорный фрагмент (т. е. музыкальный отрывок, «свернутый» с линейной передаточной функцией), до «много хуже». Статистическая обработка результатов слуховой оценки позволила установить достаточно высокий коэффициент корреляции между средними значениями субъективных оценок и значением коэффициента Gm, который оказался равным 0,68. В тоже время для КНИ он составлял 0,42, а для Ким - 0,34 (для данной серии экспериментов).
Таким образом, связь предложенного критерия с субъективными оценками качества звучания оказалась существенно выше, чем у других коэффициентов (рисунок 12).


Связь коэффициента Gm с субъективными оценками

Результаты экспериментов показали также, что электроакустический преобразователь, у которого Gm меньше 1%, может считаться вполне удовлетворительным по качеству звучания в том смысле, что нелинейные искажения в нем практически неслышимы.
Разумеется, этих результатов еще недостаточно, чтобы заменить предложенным критерием имеющиеся в стандартах параметры, такие как коэффициент гармонических искажений и коэффициент интермодуляционных искажений, однако если результаты подтвердятся при дальнейших экспериментах, то, возможно, именно так и произойдет.
Поиски других новых критериев также активно продолжаются, поскольку несоответствие имеющихся параметров (особенно коэффициента гармонических искажений, оценивающего только две первые гармоники) субъективно воспринимаемому качеству звучания становится все более очевидным по мере улучшения общего качества аудиоаппаратуры.
По-видимому, дальнейшие пути решения этой проблемы пойдут в направлении создания компьютерных моделей слуховой системы, с учетом нелинейных процессов и эффектов маскировки в ней. В этой области работает Институт коммуникационной акустики в Германии под руководством Д. Блауэрта, о котором уже было написано в статье, посвященной 114 конгрессу AES. С помощью этих моделей можно будет оценивать слышимость различных видов нелинейных искажений в реальных музыкальных и речевых сигналах. Однако, пока они еще не созданы, оценки нелинейных искажений в аппаратуре будут производиться с помощью упрощенных методов, максимально приближенных к реальным слуховым процессам.

Коэффицие́нт нелине́йных искаже́ний (КНИ или K Н ) - величина для количественной оценки нелинейных искажений .

Определение [ | ]

Коэффициент нелинейных искажений равен отношению среднеквадратичной суммы спектральных компонент выходного сигнала , отсутствующих в спектре входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала

K H = U 2 2 + U 3 2 + U 4 2 + … + U n 2 + … U 1 2 + U 2 2 + U 3 2 + … + U n 2 + … {\displaystyle K_{\mathrm {H} }={\frac {\sqrt {U_{2}^{2}+U_{3}^{2}+U_{4}^{2}+\ldots +U_{n}^{2}+\ldots }}{\sqrt {U_{1}^{2}+U_{2}^{2}+U_{3}^{2}+\ldots +U_{n}^{2}+\ldots }}}}

КНИ - безразмерная величина и выражается обычно в процентах. Кроме КНИ, уровень нелинейных искажений часто выражают и через коэффициент гармонических искажений (КГИ или K Г ) - величину, выражающую степень нелинейных искажений устройства (усилителя и др.) и равную отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

K Γ = U 2 2 + U 3 2 + U 4 2 + … + U n 2 + … U 1 {\displaystyle K_{\Gamma }={\frac {\sqrt {U_{2}^{2}+U_{3}^{2}+U_{4}^{2}+\ldots +U_{n}^{2}+\ldots }}{U_{1}}}}

КГИ, так же, как и КНИ, выражается в процентах и связан с ним соотношением

K Γ = K H 1 − K H 2 {\displaystyle K_{\Gamma }={\frac {K_{\mathrm {H} }}{\sqrt {1-K_{\mathrm {H} }^{2}}}}}

Очевидно, что для малых значений КГИ и КНИ совпадают в первом приближении. Интересно, что в западной литературе обычно пользуются КГИ, тогда как в отечественной литературе традиционно предпочитают КНИ.

Важно также отметить, что КНИ и КГИ - это лишь количественные меры искажений , но не качественные. Например, значение КНИ (КГИ), равное 3% ничего не говорит о характере искажений, т.е. о том, как в спектре сигнала распределены гармоники, и каков, например, вклад НЧ или ВЧ составляющих. Так, в спектрах ламповых УМЗЧ обычно преобладают низшие гармоники, что часто воспринимается на слух как «тёплый ламповый звук», а в транзисторных УМЗЧ искажения более равномерно распределены по спектру, и он более плоский, что часто воспринимается как «типичный транзисторный звук» (хотя спор этот во многом зависит от личных ощущений и привычек человека).

Примеры расчёта КГИ [ | ]

Для многих стандартных сигналов КГИ может быть подсчитан аналитически. Так, для симметричного прямоугольного сигнала (меандра)

K Γ = π 2 8 − 1 ≈ 0.483 = 48.3 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{8}}-1\,}}\approx \,0.483\,=\,48.3\%}

Идеальный пилообразный сигнал имеет КГИ

K Γ = π 2 6 − 1 ≈ 0.803 = 80.3 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{6}}-1\,}}\approx \,0.803\,=\,80.3\%}

а симметричный треугольный

K Γ = π 4 96 − 1 ≈ 0.121 = 12.1 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{4}}{96}}-1\,}}\approx \,0.121\,=\,12.1\%}

Несимметричный прямоугольный импульсный сигнал с соотношением длительности импульса к периоду, равному μ обладает КГИ

K Γ (μ) = μ (1 − μ) π 2 2 sin 2 ⁡ π μ − 1 , 0 < μ < 1 {\displaystyle K_{\Gamma }\,(\mu)={\sqrt {{\frac {\mu (1-\mu)\pi ^{2}\,}{2\sin ^{2}\pi \mu }}-1\;}}\,\qquad 0<\mu <1} ,

который достигает минимума (≈0.483) при μ =0.5, т.е. тогда, когда сигнал становится симметричным меандром. Кстати, фильтрованием можно добиться значительного снижения КГИ этих сигналов, и таким образом получать сигналы, близкие по форме к синусоидальным. Например, симметричный прямоугольный сигнал (меандр) с изначальным КГИ в 48.3%, после прохождения через фильтр Баттерворта второго порядка (с частотой среза, равной частоте основной гармоники) имеет КГИ уже в 5.3%, а если фильтр четвёртого порядка - то КГИ=0.6%. Следует отметить, что чем более сложный сигнал на входе фильтра и чем более сложный сам фильтр (а точнее, его передаточная функция), тем более громоздкими и трудоёмкими будут вычисления КГИ. Так, стандартный пилообразный сигнал, прошедший через фильтр Баттерворта первого порядка, имеет КГИ уже не 80.3% а 37.0%, который в точности даётся следующим выражением

K Γ = π 2 3 − π c t h π ≈ 0.370 = 37.0 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{3}}-\pi \,\mathrm {cth} \,\pi \,}}\,\approx \,0.370\,=\,37.0\%}

А КГИ того же сигнала, прошедшего через такой же фильтр, но второго порядка, уже будет даваться достаточно громоздкой формулой

K Γ = π c t g π 2 ⋅ c t h 2 π 2 − c t g 2 π 2 ⋅ c t h π 2 − c t g π 2 − c t h π 2 2 (c t g 2 π 2 + c t h 2 π 2) + π 2 3 − 1 ≈ 0.181 = 18.1 % {\displaystyle K_{\Gamma }\,={\sqrt {\pi \,{\frac {\,\mathrm {ctg} \,{\dfrac {\pi }{\sqrt {2\,}}}\cdot \,\mathrm {cth} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {ctg} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}\cdot \,\mathrm {cth} \,{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {ctg} \,{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {cth} \,{\dfrac {\pi }{\sqrt {2\,}}}\;}{{\sqrt {2\,}}\left(\mathrm {ctg} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}+\,\mathrm {cth} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}\!\right)}}\,+\,{\frac {\,\pi ^{2}}{3}}\,-\,1\;}}\;\approx \;0.181\,=\,18.1\%}

Если же рассматривать вышеупомянутый несимметричный прямоугольный импульсный сигнал, прошедший через фильтр Баттерворта p -го порядка, то тогда

K Γ (μ , p) = csc ⁡ π μ ⋅ μ (1 − μ) π 2 − sin 2 π μ − π 2 ∑ s = 1 2 p c t g π z s z s 2 ∏ l = 1 l ≠ s 2 p 1 z s − z l + π 2 R e ∑ s = 1 2 p e i π z s (2 μ − 1) z s 2 sin ⁡ π z s ∏ l = 1 l ≠ s 2 p 1 z s − z l {\displaystyle K_{\Gamma }\,(\mu ,p)=\csc \pi \mu \,\cdot \!{\sqrt {\mu (1-\mu)\pi ^{2}-\,\sin ^{2}\!\pi \mu \,-\,{\frac {\,\pi }{2}}\sum _{s=1}^{2p}{\frac {\,\mathrm {ctg} \,\pi z_{s}}{z_{s}^{2}}}\prod \limits _{\scriptstyle l=1 \atop \scriptstyle l\neq s}^{2p}\!{\frac {1}{\,z_{s}-z_{l}\,}}\,+\,{\frac {\,\pi }{2}}\,\mathrm {Re} \sum _{s=1}^{2p}{\frac {e^{i\pi z_{s}(2\mu -1)}}{z_{s}^{2}\sin \pi z_{s}}}\prod \limits _{\scriptstyle l=1 \atop \scriptstyle l\neq s}^{2p}\!{\frac {1}{\,z_{s}-z_{l}\,}}\,}}}

где 0<μ <1 и

z l ≡ exp ⁡ i π (2 l − 1) 2 p , l = 1 , 2 , … , 2 p {\displaystyle z_{l}\equiv \exp {\frac {i\pi (2l-1)}{2p}}\,\qquad l=1,2,\ldots ,2p}

подробности вычислений - см. Ярослав Благушин и Эрик Моро .

Измерения [ | ]

  • В низкочастотном (НЧ) диапазоне для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
  • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

Основным параметром электронного усилителя является коэффициент усиления К. Коэффициент усиления мощности (напряжения, тока) определяется отношением мощности (напряжения, тока) выходного сигнала к мощности (напряжению, току) входного и характеризует усилительные свойства схемы. Выходной и входной сигналы должны быть выражены в одних и тех же количественных единицах, поэтому коэффициент усиления является безразмерной величиной.

В отсутствие реактивных элементов в схеме, а также при определенных режимах ее работы, когда исключается их влияние, коэффициент усиления является действительной величиной, не зависящей от частоты. В этом случае выходной сигнал повторяет форму входного и отличается от него в К раз только амплитудой. В дальнейшем изложении материала речь пойдет о модуле коэффициента усиления, если нет особых оговорок.

В зависимости от требований, предъявляемых к выходным параметрам усилителя переменного сигнала, различают коэффициенты усиления:

а) по напряжению, определяемый как отношение амплитуды переменной составляющей выходного напряжения к амплитуде переменной составляющей входного, т. е.

б) по току, который определяется отношением амплитуды переменной составляющей выходного тока к амплитуде переменной составляющей входного:

в) по мощности

Так как , то коэффициент усиления по мощности можно определить следующим образом:

При наличии реактивных элементов в схеме (конденсаторов, индуктивностей) коэффициент усиления следует рассматривать как комплексную величину

где m и n - действительная и мнимая составляющие, зависящие от частоты входного сигнала:

Положим, что коэффициент усиления К не зависит от амплитуды входного сигнала. В этом случае при подаче на вход усилителя синусоидального сигнала выходной сигнал также будет иметь синусоидальную форму, но отличаться от входного по амплитуде в К раз и по фазе на угол .

Периодический сигнал сложной формы согласно теореме Фурье можно представить суммой конечного или бесконечно большого числа гармонических составляющих, имеющих разные амплитуды, частоты и фазы. Так как К - комплексная величина, то амплитуды и фазы гармонических составляющих входного сигнала при прохождении через усилитель изменяются по-разному и выходной сигнал будет отличаться по форме от входного.

Искажения сигнала при прохождении через усилитель, обусловленные зависимостью параметров усилителя от частоты и не зависящие от амплитуды входного сигнала, называются линейными искажениями. В свою очередь, линейные искажения можно разделить на частотные (характеризующие изменение модуля коэффициента усиления К в полосе частот за счет влияния реактивных элементов в схеме); фазовые (характеризующие зависимость сдвига по фазе между выходным и входным сигналами от частоты за счет влияния реактивных элементов).

Частотные искажения сигнала можно оценить с помощью амплитудно-частотной характеристики, выражающей зависимость модуля коэффициента усиления по напряжению от частоты. Амплитудно-частотная характеристика усилителя в общем виде представлена на рис. 1.2. Рабочий диапазон частот усилителя, внутри которого коэффициент усиления можно считать с известной степенью точности постоянным, лежит между низшей и высшей граничными частотами и называется полосой пропускания. Граничные частоты определяют уменьшение коэффициента усиления на заданную величину от своего максимального значения на средней частоте .

Введя коэффициент частотных искажений на данной частоте ,

где - коэффициент усиления по напряжению на данной частоте, можно с помощью амплитудно-частотной характеристики определить частотные искажения в любом диапазоне рабочих частот усилителя.

Поскольку наибольшие частотные искажения имеем на границах рабочего диапазона, то при расчете усилителя, как правило, задают коэффициенты частотных искажений на низшей и высшей граничных частотах, т. е.

где - соответственно коэффициенты усиления по напряжению на высшей и низшей граничных частотах.

Обычно принимают , т. е. на граничных частотах коэффициент усиления по напряжению уменьшается до уровня 0,707 значения коэффициента усиления на средней частоте. При таких условиях полоса пропускания усилителей звуковой частоты, предназначенных для воспроизведения речи и музыки, лежит в пределах 30-20 000 Гц. Для усилителей, применяемых в телефонии, допустима более узкая полоса пропускания 300-3400 Гц. Для усиления импульсных сигналов необходимо использовать так называемые широкополосные усилители, полоса пропускания которых располагается в диапазоне частот от десятков или единиц герц до десятков или даже сотен мегагерц.

Для оценки качества усилителя часто пользуются параметром

Для широкополосных усилителей , поэтому

Противоположностью широкополосных усилителей являются избирательные усилители, назначение которых состоит в усилении сигналов в узкой полосе частот (рис. 1.3).

Усилители, предназначенные для усиления сигналов со сколь угодно малой частотой, называются усилителями постоянного тока. Из определения ясно, что низшая граничная частота полосы пропускания такого усилителя равна нулю. Амплитудно-частотная характеристика усилителя постоянного тока дана на рис. 1.4.

Фазочастотная характеристика показывает, как меняется угол сдвига фаз между выходным и входным сигналами при изменении частоты и определяет фазовые искажения.

Фазовые искажения отсутствуют при линейном характере фазочастотной характеристики (пунктирная линия на рис. 1.5), так как в этом случае каждая гармоническая составляющая входного сигнала при прохождении через усилитель сдвигается по времени на один и тот же интервал . Угол сдвига фаз между входным и выходным сигналами при этом пропорционален частоте

где - коэффициент пропорциональности, определяющий угол наклона характеристики к оси абсцисс.

Фазочастотная характеристика реального усилителя представлена на рис. 1.5 сплошной линией. Из рис. 1.5 видно, что в пределах полосы пропускания усилителя фазовые искажения минимальны, однако резко возрастают в области граничных частот.

Если коэффициент усиления зависит от амплитуды входного сигнала, то имеют место нелинейные искажения усиливаемого сигнала, обусловленные наличием в усилителе элементов с нелинейными вольт-амперными характеристиками.

Задавая закон изменения можно проектировать нелинейные усилители с определенными свойствами. Пусть коэффициент усиления определяется зависимостью , где - коэффициент пропорциональности.

Тогда при подаче на вход усилителя синусоидального входного сигнала выходной сигнал усилителя

где - амплитуда и частота входного сигнала.

Первая гармоническая составляющая в выражении (1.6) представляет собой полезный сигнал, остальные являются результатом нелинейных искажений.

Нелинейные искажения можно оценить с помощью так называемого коэффициента гармоник

где - амплитудные значения соответственно мощности, напряжения и тока гармонических составляющих.

Индекс определяет номер гармоники. Обычно учитывают только вторую и третью гармоники, так как амплитудные значения мощностей более высоких гармоник сравнительно малы.

Линейные и нелинейные искажения характеризуют точность воспроизведения формы входного сигнала усилителем.

Амплитудная характеристика четырехполюсников, состоящих только из линейных элементов, при любом значении теоретически является наклонной прямой. Практически же максимальное значение ограничивается электрической прочностью элементов четырехполюсника. Амплитудная характеристика усилителя, выполненного на электронных приборах (рис. 1.6), в принципе нелинейна, однако может содержать участки ОА, где кривая носит приблизительно линейный характер с большой степенью точности. Рабочий диапазон входного сигнала не должен выходить за пределы линейного участка (ОА) амплитудной характеристики усилителя, иначе нелинейные искажения превысят допустимый уровень.

В ся история звуковоспроизведения складывалась из попыток приблизить иллюзию к оригиналу. И хотя путь пройден громадный, до полного приближения к живому звуку еще очень и очень далеко. Отличия по многочисленным параметрам могут быть измерены, но и не мало их остается пока вне поля зрения разработчиков аппаратуры. Одной из главных характеристик, на которую потребитель с любой подготовкой всегда обращает внимание, является коэффициент нелинейных искажений (КНИ) .

И какая же величина этого коэффициента достаточно объективно свидетельствует о качестве устройства? Нетерпеливые могут сразу найти попытку ответа на этот вопрос в конце. Для остальных продолжим.
Этот коэффициент, который еще называют коэффициентом общих гармонических искажений, представляет собой выраженное в процентах отношение эффективной амплитуды гармонических составляющих на выходе устройства (усилителя, магнитофона и т.п.) к эффективной амплитуде сигнала основной частоты при воздействии на вход устройства синусоидального сигнала этой частоты. Таким образом, он позволяет количественно оценить нелинейность передаточной характеристики, которая проявляется в появлении в выходном сигнале спектральных составляющих (гармоник), отсутствующих во входном сигнале. Другими словами, происходит качественное изменение спектра музыкального сигнала.

Кроме объективных гармонических искажений, присутствующих в слышимом звуковом сигнале, существует проблема искажений, которые отсутствуют в реальном звуке, но ощущаются из-за субъективных гармоник, возникающих в улитке среднего уха при больших величинах звукового давления. Слуховой аппарат человека является нелинейной системой. Нелинейность слуха проявляется в том, что при воздействии на барабанную перепонку синусоидального звука с частотой f в слуховом аппарате зарождаются гармоники этого звука с частотами 2f, 3f и т.д. Поскольку в первичном воздействующем тоне этих гармоник нет, они получили название субъективных гармоник.

Естественно, это еще больше осложняет представление о предельно допустимом уровне гармоник звукового тракта. При увеличении интенсивности первичного тона величина субъективных, гармоник резко возрастает и может даже превысить интенсивность основного тона. Это обстоятельство дает основание для предположения о том, что звуки с частотой менее 100 Гц ощущаются не сами по себе, а из-за создаваемых ими субъективных гармоник, попадающих в область частот свыше 100 Гц, т.е. из-за нелинейности слуха. Физические причины возникающих аппаратных искажений в различных устройствах имеют разную природу, и вклад каждого в общие искажения всего тракта неодинаков.

Искажения современных CD-проигрывателей имеют очень низкие значения и практически незаметны на фоне искажений других блоков. Для акустических систем наиболее существенными являются низкочастотные искажения, обусловленные басовой головкой, и стандартом оговариваются требования только для второй и третьей гармоник в области частот до 250 Гц. И для очень хорошо звучащей акустической системы они могут быть в пределах 1% или даже несколько больше. В аналоговых магнитофонах главной проблемой, связанной с физическими основами записи на магнитную ленту, является третья гармоника, значения которой обычно и приводятся в инструкции для сведения. Но максимальное значение, при котором, например, всегда производятся измерения уровня шумов, это 3% для частоты 333 Гц. Искажения же электронной части магнитофонов значительно ниже.
Как в случае акустики, так и для аналоговых магнитофонов, благодаря тому, что искажения в основном низкочастотные, субъективная заметность их сильно падает из-за эффекта маскировки (который заключается в том, что из двух одновременно звучащих сигналов лучше слышен более высокочастотный).

Так что главным источником искажений в вашем тракте будет усилитель мощности, в котором, в свою очередь, основным является нелинейность передаточных характеристик активных элементов: транзисторов и электронных ламп, а в трансформаторных усилителях также добавляются нелинейные искажения трансформатора, связанные с нелинейностью кривой намагничивания. Очевидно, что с одной стороны искажения зависят от формы нелинейности передаточной характеристики, но также и от характера входного сигнала.

Например, передаточная характеристика усилителя с плавным ограничением при больших амплитудах не вызовет никаких искажений для синусоидальных сигналов, меньших уровня ограничения, а при увеличении сигнала выше этого уровня искажения появляются и будут увеличиваться. Такой характер ограничения присущ в основном ламповым усилителям, что в какой-то мере может служить одной из причин предпочтения таких усилителей слушателями. И эту особенность использовала фирма NAD в серии своих нашумевших усилителей с "мягким ограничением", выпускавшихся с начала 80-х годов: возможность включения режима с имитацией лампового ограничения создала многочисленную армию поклонников транзисторных усилителей этой фирмы.
Напротив, характеристика усилителя с центральной отсечкой (искажения типа "ступенька"), которая характерна для транзисторных моделей, вызывает искажения музыкальных и малых синусоидальных сигналов, а с увеличением уровня сигнала искажения будут уменьшаться. Таким образом, искажение зависит не только от формы передаточной характеристики, но также от статистического распределения уровней входного сигнала, которое для музыкальных программ близко к шумовому сигналу. Поэтому, кроме измерения КНИ с использованием синусоидального сигнала, возможен метод измерений нелинейных искажений усилительных устройств с использованием суммы трех синусоидальных или шумового сигнала, дающих в свете вышесказанного более объективную картину искажений.

Для проведения этого анализа необходимо следующее:

1. Изменить входной источник сигнала AC Voltage на Pulse Voltage и установить в нем параметры приведенные на рисунке.

2. В самом анализе следует установить следующее:


Рис. 11

Проанализировав полученный график оценим искажение импульса:

1) Выброс фронта?ф~1 В, это не превышает 4% от U ном и является неплохим показателем качества данного усилителя.

2) Скорость нарастания выходного напряжения?U~ 2 В/мкс и время нарастания

t Ф ~ 10 мксек, что в совокупности составляет неплохой показатель качества нарастания выходного сигнала в данном усилителе.

3) Так же усилитель имеет неплохие характеристики заднего фронта импульса, которые схожи с характеристиками переднего фронта.

Коэффициент гармоник

Нелинейные искажения вызваны прохождением сигнала через элементы, имеющие нелинейные характеристики, например, через транзисторы, вследствие чего искажается форма колебания и меняется его спектральный состав. Поскольку усилитель вносит нелинейные искажения, то на его выходе появляются новые компоненты (гармоники), отсутствующие на входе, что вызывает искажение тембра звука. Количественной оценкой нелинейных искажений является коэффициент гармоник Кг:

где Р г -- суммарная мощность гармоник; P 1 -- мощность полезного сигнала.

Из всех гармоник наиболее интенсивны вторая и третья. Остальные имеют гораздо меньшую мощность и мало влияют на форму выходного сигнала.

Коэффициент гармоник многокаскадного усилителя обычно близок к сумме коэффициентов гармоник отдельных каскадов. Поэтому если нелинейные искажения в предварительных каскадах соизмеримы с искажениями в оконечном каскаде, то общий коэффициент гармоник тракта звуковоспроизведения можно оценить по формуле:

Однако коэффициент К г дает неполное представление о нелинейных искажениях в усилителе, так как он не учитывает сигналы комбинационных частот, образующиеся в результате интерференции между отдельными составляющими сложного колебании. Наиболее заметны нелинейные искажения из-за комбинационных частот, возникающие при подаче на усилитель двух и большего числа синусоидальных сигналов. Особенно заметны комбинационные частоты вида f1--f2, f1--2f2, 2f1--f2, так как они, как правило, не содержатся в спектре даже сложного входного сигнала.

Для высококачественных усилителей часто вводят еще один показатель, характеризующий их нелинейность, -- коэффициент интермодуляционных искажений Ким.и. При измерении Kим.и на вход усилителя подают два гармонических колебания с частотами: f1 = 50... 100 Гц и f 2 = 5... 10 кГц при отношении амплитуд Uвх(f1)/Uвх(f2)=4/1- Коэффициент Ким.и равен отношению амплитуды выходного напряжения разностной частоты f 2 --f 1 к амплитуде выходного напряжения частоты f 1:

Рис. 12.

Допустимое значение Ким.и<0,1 ... 1%.

Нелинейные искажения значительно зависят от амплитуды подаваемого на вход сигнала. На рис. 12 показан характер зависимости коэффициента Кт от мощности на выходе усилителя. Эта кривая является основной характеристикой для оценки нелинейных искажении. Она служит также для определения максимальной полезной мощности усилителя по заданному Кг.

Коэффициент гармоник задается, как правило, для большого уровня входного сигнала. Для транзисторных усилителей мощности характерно увеличение нелинейных искажений при весьма малых уровнях входного сигнала, что вызвано искажениями типа "ступенька" или "центральная отсечка". Поэтому для полной оценки качества усилителя целесообразно контролировать К г также при малых уровнях входных сигналов.

В основном нелинейные искажения возникают в оконечном и предоконечном каскадах. Для оконечных усилителей вносимые нелинейные искажения различны на разных частотах. В области граничных частот полосы пропускания они возрастают (при неизменной амплитуде входного сигнала). Это объясняется реактивным характером сопротивления нагрузки оконечных транзисторов и связанным с этим изменением формы динамической характеристики на крайних частотах полосы пропускания.

Допустимые нелинейные искажения зависят от назначения усилителя. Так, в усилителях ЗЧ, используемых в радиовещании и бытовой звуковоспроизводящей аппаратуре, коэффициент гармоник по ГОСТ 11157--74 должен составлять 1 ... 2%. В высококачественной профессиональной аппаратуре К г <0,05%.

В последние годы резко улучшились параметры высококлассной звуковоспроизводящей аппаратуры. Особенно заметна тенденция к снижению нелинейных искажений. Появились усилители ЗЧ, у которых коэффициент Кг<0,0005%. Достижение чрезвычайно малых нелинейных искажений связано с применением большого количества транзисторов с высоким коэффициентом усиления и установлением глубокой ООС. Последнее обстоятельство приводит к ухудшению динамических (скоростных) характеристик, заключающемуся в том, что резкий скачок напряжения на выходе запаздывает по отношению к вызывающему его скачку на входе. Это приводит к "жесткому", "транзисторному" звучанию, исчезает мягкость, бархатистость звука при субъективном восприятии музыкальной программы.

Проблема заметности коэффициента гармоник в диапазоне 1 ... 0,0005% не имеет однозначного толкования. Можно лишь утверждать, что если получены малые нелинейные искажения, и они достигнуты не за счет ухудшения других параметров усилителя, то это говорит о совершенстве усилительного тракта.

Однако следует отметить, что испытание усилителей со сверхмалыми нелинейными искажениями предъявляет весьма высокие требования к нелинейным искажениям источника испытательных сигналов. Лучшие отечественные звуковые генераторы типа ГЗ-102 обеспечивают К г не менее 0,05%, т. е. имеют тот же порядок, что в нелинейные искажения, вносимые самим усилителем. Разрешающая способность измерителей нелинейных искажений С6-5 также составляет от 0,02 до 0,03%. Поэтому точные измерения сверхмалых нелинейных искажении весьма затруднительны.

Для испытаний сверхлинейных усилителей следует пользоваться прецизионными звуковыми генераторами и анализаторами спектра. Хорошие результаты при оценке сверхмалых нелинейных искажений дает метод компенсации.