ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Корректировка ачх акустики пассивными фильтрами. Об искажениях частотных характеристик малогабаритных акустических систем и «глубоких басах

Так как операционный усилитель представляет собой многокаскадный усилитель с очень большим коэффициентом усиления, то вероятность его самовозбуждения при введении отрицательной обратной связи весьма велика. Поэтому для обеспечения устойчивости ОУ необходимо принимать специальные меры. Устойчивость ОУ оценивают с помощью логарифмических амплитудно-частотной (АЧХ) и фазочастотной (ФЧХ) характеристик.

При построении АЧХ обычно используют логарифмический асштаб по обеим осям координат, т. е. коэффициент усиления Ыражается в децибелах. Используя формулы (4.42), (4.46) и полагая, что 2, легко построить АЧХ и ФЧХ для одного каскада. Для удобства анализа характеристики аппроксимируют в виде прямых (рис. 6.15).

АЧХ представляет собой горизонтальную линию на уровне . На частоте среза излом и при АЧХ представляет собой прямую с наклоном 20 дБ при изменении частоты в 10 раз, т. е. 20 дБ на декаду. Таким образом, скорость спада АЧХ, построенная для одного каскада при , равна .

Если оценивать скорость спада АЧХ с помощью октавы (из-менения частоты в два раза), то можно считать, что скорость спада АЧХ однокаскадного усилителя составляет (рис. 6.15, а).

Частота среза, соответствующая излому аппроксимированной АЧХ, приблизительно равна граничной частоте усиления в реальной АЧХ. Максимальная погрешность их равенства при аппроксимации АЧХ составляет 3 дБ.

Построенную с помощью выражения (4.46) ФЧХ (рис. ) также можно аппроксимировать в виде прямой, проведенной от точки до точки , в которой 90°. На частотах ФЧХ представляется горизонтальной прямой на уровне . При такой идеализации отклонение от реальной ФЧХ составляет не больше 5,7°.

Амплитудно-частотная характеристика многокаскадного усилителя строится путем суммирования АЧХ отдельных его каскадов и имеет несколько изломов, число которых соответствует количеству каскадов.

На рис. 6.16, а приведена АЧХ трехкаскадного усилителя, построенная путем суммирования АЧХ каскадов с частотами среза и коэффициентами усиления в области низких частот .

Фазочастотная характеристика многокаскадного усилителя (рис. 6.16, б) строится путем суммирования фазовых характеристик отдельных каскадов с построенной выше АЧХ.

Из рис. 6.16, а видно, что в диапазоне частот от до скорость спада АЧХ составляет , от до , а на участке от до сот - 60 дБ ( - частота единичного усиления).

Таким образом, каждый каскад увеличивает скорость спада АЧХ на .

Фазовый сдвиг на частоте составляет -45°, на частоте - 135° и на частоте - 225° (рис. 6.16, б).

При введении отрицательной обратной связи угол сдвига между выходным и входным напряжениями усилителя должен составлять 180°, если четырехполюсник обратной связи не имеет реактивных элементов, т. е. [см. формулу (2.34)].

При положительной обратной связи с учетом имеем .

Таким образом, чтобы за счет реактивных элементов усилителя отрицательная обратная связь стала положительной, дополнительный фазовый сдвиг должен составлять 180°.

Для обеспечения запаса устойчивости усилителя по фазе принимаем, что сдвиг нйне должен превышать 135°. Тогда можно считать, что область устойчивости работы многокаскадного усилителя, в частности ОУ, при введении отрицательной обратной связи определяется участком АЧХ со спадом , так как на частоте фазовый сдвиг составляет 135°.

При глубокой отрицательной обратной связи .

На рис. 6.16, а , выраженный в децибелах, может быть представлен прямыми 2 и 3, отражающими различную глубину обратной связи. В точках пересечения этих прямых с АЧХ усилителя без обратной связи А и Б имеем , т. е. именно в этих точках выполняется другое условие самовозбуждения усилителя

Таким образом, на частотах усилитель не самовозбуждается, так как, несмотря на выполнение условия (6.22), обеспечивается достаточный запас устойчивости по фазе. На частотах усилитель работает неустойчиво, так как могут выполняться оба условия самовозбуждения усилителя (6.22) и (2.34).

Для повышения устойчивости ОУ при введении глубокой отрицательной обратной связи проводится частотная коррекция АЧХ с помощью пассивных -цепей, включаемых в схему операционного усилителя. Корректирующие цепи изменяют АЧХ таким образом, что ее спад на всех частотах составляет (рис. 6.16, а). Наиболее просто осуществить коррекцию АЧХ, включив в схему ОУ конденсатор достаточно большой емкости так, чтобы постоянная времени корректирующей цепи превышала . Тогда АЧХ усилителя сдвинется влево, и точка, соответствующая ее частоте среза , будет определяться уже величиной емкости , а спад АЧХ составляет в диапазоне частот . Если частота больше частоты единичного усиления сот кор скорректированной АЧХ, то усилитель будет устойчив при любой глубине обратной связи во всем диапазоне рабочих частот от 0 до . Недостаток такого способа коррекции состоит в том, что, обеспечив устойчивость усилителя, мы ограничим его полосу пропускания.

В настоящее время нашей промышленностью выпускаются ОУ общего применения, при разработке принципиальных схем которых учтено использование корректирующего конденсатора . ОУ, называемые усилителями с внутренней коррекцией, не требуют дополнительных корректирующих элементов и устойчивы любой глубине обратной связи во всем диапазоне рабочих Однако узкая полоса пропускания ограничивает применение с внутренней коррекцией.

Если необходимо усиливать сигналы высокой частоты, то используют ОУ с внешней коррекцией, когда усилитель имеет дополнительные внешние выводы для подключения корректирующих цепей.

Эти выводы позволяют выбрать оптимальную коррекцию АЧХ усилителя путем подключения к выводам коррекции навесных конденсаторов или -цепей. В спецификациях изготовителей ОУ обычно приводятся инструкции по применению цепей внешней коррекции.

Задача неискажённой трансляции звуковой программы от исполнителя к слушателю стара как мир. Как мир электроакустики…

Раймонд Скурулс - радиоинженер и звукорежиссёр, основатель и владелец компании Acoustic Power Lab. В 2005 году, после трёх лет работы он получает латвийский патент (LV1334213) на новую технологию коррекции частотных характеристик громкоговорителей. Журнал «Pro Sound News Europe» называет технологию коррекции AJFL в числе трёх лучших инноваций в данной сфере в Европе. По итогам выставки AES в Нью-Йорке новой разработке присуждён приз Excellence 2007 года. В 2010-м автор разрабатывает вариант технологии для применения в автомобиле.

Одно из необходимых условий для этого - отсутствие линейных искажений. С беглого академического взгляда всё кажется очень простым: померили частотную характеристику, создали корректирующий фильтр, и дело сделано. Очень много таких попыток было предпринято, но результата так и нет. Конечно, по мнению авторов этих попыток и их поддерживающего маркетинга, результат есть. Но бесстрастный мир профессионалов остаётся при другом мнении.

Проблема в том, что технические средства оценки звуковых систем принимают и оценивают звук иначе, чем человеческий слух. Они «видят» больше «проблем», чем наше слуховое восприятие (как бы парадоксально это ни звучало). Эти проблемы берут своё начало в физической интерференции звуковых волн в месте измерения звукового давления. Но интерференция наступает только тогда, когда пришли, в простейшем случае, два сигнала - прямой и отраженный (установившийся случай). Но на какой-то короткий миг есть только прямой сигнал и отсутствует интерференция. Нашему слуху этого короткого мига хватает, чтобы сделать оценку.

Попытаюсь доказать временную избирательность слуха и его способность игнорировать интерференцию двумя простыми для повторения экспериментами. Опыт первый. Тестовый сигнал «чирп» (синусоидальный сигнал с быстро меняющейся частотой), короткий, 150 - 300 мс, логарифмический, субъективно звучит абсолютно по-разному, когда воспроизводится, начиная с низких частот к верхним и наоборот. Играя «вверх», сигнал кажется тусклым, с потерянными верхами. Играя вниз - звучит красиво, музыкально, с ярко выраженными верхами. А для спектроанализатора оба случая одинаковы и неразличимы.

Опыт второй. Сядем перед классической стереосистемой. Подадим моносигнал. Если в системе всё в порядке, услышим узкий воображаемый источник звука ровно посередине между громкоговорителями. Теперь сами подвигаемся из стороны в сторону. При этом мы услышим лишь, что воображаемый источник будет слегка перемещаться в ту же сторону, что и мы. Теперь поставим на наше место микрофон. Будем слушать сигнал с этого микрофона и подвигаем его. Услышим красивый эффект фленджера, созданный меняюшимся гребенчатым фильтром. Попробуйте.

Итак. По моему мнению (которое я превращаю в реальную технологию уже почти десять лет), надо измерять и оценивать звуковую систему наподобие того, как это делает наш слух. Это оказалось возможным, если вместо попыток что-то понять по результатам измерения звукового давления в одной точке мерить частотную характеристику излучённой звуковой мощности громкоговорителя. Это и есть основа моих работ и решений.

Хочу взять на себя смелость пересмотреть подход к неискаженной трансляции звуковой программы. Вот классический принцип. В комнате (студии, открытой площадке) перед исполнителем установлен микрофон, который преобразует звуковое давление в пропорциональный электрический сигнал независимо от частоты. За ним тракт передачи (предусилитель, радиоканал, устройство задержки во времени и.т.д., и.т.п.), заканчивающийся усилителем и громкоговорителем в комнате прослушивания. Тракт должен передавать сигнал одинаково, независимо от частоты, а громкоговоритель - пропорционально преобразовывать электрический сигнал в звуковое давление. И опять - независимо от частоты. О том, соответствует ли громкоговоритель этому требованию, мы удостоверились в заглушенной камере на его «акустической оси» и теперь ждём успеха. Часто это ожидание оказывается напрасным и наивным.

Подход, который я развиваю - другой. Громкоговоритель в месте прослушивания для получения неискажённого звукового образа должен излучать такую же или пропорциональную по спектральному составу и временным характеристикам звуковую мощность, какую излучает музыкант в месте исполнения.

Правильность этого подхода уже неоднократно была проверена на практике и с большим успехом демонстрировалось на выставке AES в мае 2007 года, когда запись аккордеонного дуэта проигрывалась через откорректированный тракт, завершающийся хорошо знакомыми россиянам колонками Radiotehnika S90, и сравнивалась с живым выступлением того же дуэта, согласившегося поучаствовать в эксперименте.

Кстати: вот ещё эпизод из жизни S90. Небольшой компании, оставшейся от флагмана советской электроакустики - Рижского радиозавода, хватило смелости принять участие в тесте ведущего российского аудиожурнала со своими громкоговорителями бюджетного класса. Результаты были впечатляющими, без единого упрёка по поводу звучания и с комментарием: «Непонятно, почему хорошо звучит», притом что кривые АЧХ никак на это не указывали. Разгадка проста: при отстройке этого громкоговорителя использовалась программа и методика измерения AJFL.

Точность метода позволяет использовать его в студиях с самыми качественными мониторами, в то же время возможности глубины коррекции настолько велики, что зазвучит даже ведро. Мы и такой опыт ставили…

Как на практике реализуется метод коррекции по излучаемой акустической мощности? Измерение акустического давления происходит во многих (примерно 200) точках пространства, расположенных на некой воображаемой поверхности или её сегменте. Проще говоря: измеритель чертит микрофоном в воздухе воображаемую решётку из вертикальных линий, на это уходит около минуты. Специально разработанная программа самостоятельно фиксирует величину звукового давления в отдельных точках, а потом вычисляет частотную характеристику акустической мощности (AJFL), где оказываются учтены факторы интерференции и фазовых сдвигов. На основе этой характеристики синтезируется корректирующая кривая. Она создаётся как зеркальная по отношению к кривой по АЧХ излучаемой мощности, при этом есть возможность следовать этой кривой с точностью, недоступной традиционным эквалайзерам. Дело в том, что в роли эквалайзера в технологии AJFL применён фильтр с конечной импульсной характеристикой - FIR. Для радиотехники он не нов, но в звуковой аппаратуре до сих пор использовался крайне редко. Можно даже сказать, не использовался вообще (мне известен только один прибор с FIR-фильтром, сами его создатели толком не знают, как с ним работать). Происходит это по трём причинам: высокие требования к вычислительной мощности, несущественная практическая выгода от полученной точности и сложность управления, отсюда - возврат к понятным и привычным параметрическим и графическим эквалайзерам.

И ещё одно: коррекция фазы. В технологии AJFL она происходит автоматически. Дело в том, что если проблему (неравномерность) вызвала минимально фазовая система (а таковой является большинство электрических цепей и фильтров с одним путём сигнала с входа на выход), то, создав минимально фазовый корректор, проблема корректируется идеально - как по амплитуде, так и по фазе. Корректирующий фильтр-эквалайзер, применённый в системе AJFL - именно такой, минимально фазовый.

В 2010 году появилось и решение для автомобиля. Здесь пришлось несколько доработать как технику измерений, так и приборный блок, ответственный за последующую коррекцию. С учётом более сложной, нежели в обычном помещении, акустики АЧХ излучаемой мощности в салоне снимается в несколько приёмов и в трёх (а не в двух) координатах. Результаты измерения интерпретируются специальной версией программы на ноутбуке и загружаются в блок, который остаётся на борту между источником сигнала и усилителями. В ходе измерения и настройки (это важно) есть возможность, помимо автоматической коррекции по «зеркальной» кривой, вносить и ручную подстройку, для этого предусмотрена подсистема высокоточного параметрического эквалайзера.

Размеры блока с аналоговыми и цифровыми входами/выходами - 18 x 15 x 5 см, напряжение питания - от 7 до 16 В. Есть вход Remote и выход задержанного Remote для управления включением усилителей. Сейчас в работе упрощённая модификация прибора, вдвое меньше по габаритам и только с аналоговыми входами/выходами. А через пару месяцев будет готова «быстрая» загрузка фильтров через USB-интерфейс. Так что, я думаю, у нас ещё найдётся повод здесь встретиться. А не захотите дожидаться - отыскать меня нетрудно, адрес есть в этом номере журнала.

По методу AJFL замеры проводятся не в одной, а во множестве точек, образующих сегмент поверхности

Демонстрация метода на выставке AES в Вене в 2007 году

По синтезированной из множества точечных замеров АЧХ излучаемой мощности программа строит «зеркальную» корректирующую кривую

Итог коррекции: шаг по частоте в единицы герц недоступен для традиционных эквалайзеров

Один из тяжёлых случаев (в салоне автомобиля). Результат - аналогичный

Первая автомобильная модель блока коррекции

3.2. Высокочастотная и низкочастотная коррекции АЧХ резисторного усилителя

Для корректирования АЧХ реального усилителя с целью её приближения к АЧХ идеального усилителя (см рис.3.1) применяют специальные схемы коррекции в области НЧ и ВЧ.

Схема ВЧ - коррекции АЧХ при помощи корректирующей индуктивности Lк приведена на рис. 3.8.

Принцип работы этой схемы основан на увеличении в области ВЧ сопротивления коллекторной цепи (Rк + jwLк). Увеличение этого сопротивления с ростом w позволяет повысить усиление каскада на ВЧ. Необходимым условием эффективности работы этой схемы является высокоомность внешнего сопротивления нагрузки Rн >Rк. В противном случае малое сопротивление Rн будет шунтировать коллекторную цепь, при этом усиление каскада будет определяться величиной Rн и мало зависеть от Rк и Lк. Эквивалентная схема касакада с ВЧ- корркцией при 1/Yi > Rн > Rк представлена на рис.3.9, откуда следует, что на ВЧ АЧХ корректированного усилителя близка к частотной характеристике параллельного колебательного контура.

Следовательно, при неоптимальном выборе параметров корректирующей индуктивности Lк на АЧХ усилителя может появиться подъем, вызывающий искажения усиливаемых сигналов. АЧХ и ПХ усилителя с ВЧ-коррекцией при оптимальных и неоптимальных параметрах корректирующей индуктивности Lк показаны на рис.3.10.

1. Lк < Lопт 2.Lк = Lопт 3.Lк > Lопт

Видно, что ВЧ-коррекция оказывает влияние только на область ВЧ (область малых времен - фронты импульсов). При Lк > Lопт длительность фронта самая малая, однако, на выходном импульсном сигнале возникает выброс.

Схема НЧ-коррекции АЧХ усилителя показана на рис.3.11, где Rф и Сф - элементы НЧ-коррекции, выполняющие попутно и роль НЧ-фильтра в цепи питания транзистора VT1.

Принцип работы схемы НЧ-коррекции основан на увеличении сопротивления коллекторной цепи в области НЧ, поэтому, как и в схеме индуктивной ВЧ-коррекции, данная схема эфективна только при высокоомной нагрузке Rн > Rк. Емкость конденсатора Ср выбирается таким образом, чтобы на средних и высоких частотах выполнялось 1/wСф << Rф (то есть Сф шунтирует Rф), поэтому цепь Сф, Rф практически не оказывает влияния на работу усилителя на СЧ и ВЧ. На НЧ сопротивление Сф становится больше сопротивления Rф, это увеличивает сопротивление коллекторной цепи и как результат - понижает нижнюю граничную частоту полосы пропускания усилителя. При этом отношение Rф/Rк определяет максимально возможный подъем усиления с понижением частоты w, который однако, реально всегда бывает меньше по причине снижения усиления на НЧ из-за разделительного конденсатора Ср.

АЧХ и ПХ усилителя при оптимальных и неоптимальных параметрах НЧ-коррекции (1 - без коррекции, 2 - оптимальная коррекция, 3 - перекоррекция) приведены на рис.3.12.

4. ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ.

В состав лабораторной устоновки входят:

1) лабораторный макет;

2) лабораторной блок питания;

3) универсальный вольтмер (типа В7-15, В7-16) .

4) генератор низкочастотных сигналов (типа Г3-56, ГЗ-102).

Лабораторный макет содержит:

а) исследуемый резисторный усилитель переменного тока с эмиттерным повторителем на выходе для обеспечения высокоомности нагрузки усилителя (см. рис. 4.1.).

б) встроенный генератор импульсных сигналов (с возможностью регулировки амплитуды и длительности импульсов), расположенный на верхней части корпуса лабораторного макета.

Питание лабораторного макета осуществляется от источника постоянного напряжения En = +12В. Внешний вид лицевой панели с нанесенной на нее принципиальной схемой лабораторного макета представлен на рис.4.2.

5. ПОРЯДОК РАБОТЫ

5.1. Исследование влияния разделительного конденсатора на характеристики усилителя.

а) Собрать установку по схеме рис. 5.1. Все переключатели поставить в исходное 1 положение.

Величину Uвых установить в пределах 10...30 мВ для обеспечения линейного режима работы усилителя. Исследуя зависимость Uвых от частоты f входного сигнала (при неизменной величине Uвх) получить и построить АЧХ усилителя при 2-х значениях емкости Ср (переключатель S4). При исследовании АЧХ рекомндуется предварительно оценить частотную область равномерного усиления, где число отсчетов может быть сокращено до 3...4. В частотных областях изменения АЧХ (НЧ и ВЧ) число осчетных точек должно быть увеличено до 4...5.

б) Подключить на вход исследуемого усилителя импульсный сигнал с генератора прямоугольных импульсов (см. раздел 4). Выходное напряжение усилителя контролировать при помощи осциллографа. Зарисовать с экрана осциллографа на одном графике форму импульсов на выходе усилителя (ПХ усилителя) для двух значений Ср.

Измерить величину спада плоской части вершины импульса (в %) для двух значений Ср.

Сделать выводы о вляинии разделительного конденсатора Ср на характеристики усилителя.

5.2. Исследование влияния коллекторного сопротивления на характеристики усилителя.

Используя схему и методики п.5.1. измерить номинальный коэффициент усиления Ко, снять АЧХ и ПХ усилителя для 2-х значений Rк. Построить АЧХ и ПХ усилителя для двух значений Rк.

Сделать выводы о влиянии коллекторного сопротивления на характеристики усилителя.

5.3. Исследование влияния НЧ-коррекции.

Переключатель S4 поставить в положение, соответствующее меньшему значению Ср. Исследовать АЧХ и ПХ усилителя для 3-х значений праметров НЧ-коррекции. Построить АЧХ и ПХ усилителя для различных параметров НЧ-коррекции.

Сделать выводы о влиянии Rф, Сф на характеристики усилителя.

5.4. Исследование влияния ВЧ-коррекции

Переключатель S1 поставить в положение Rк max, а переключатель S5 в положение 1.

Исследовать АЧХ и ПХ усилителя для 3-х значений корректирующей индуктивности Lк. Построить АЧХ и ПХ усилителя для различных параметров индуктивной ВЧ-коррекции.

Сделать выводы о влиянии Lк на характеристики усилителя.

5.5. Оформление отчета о лабораторной работе.

Отчет должен содержать:

а) схему резисторного усилителя переменного тока с НЧ и ВЧ коррекцией;

б) результаты измерений, таблицы и графики, требуемые лабораторными заданиями;

в) заключение о соответствии полученных результатов теоретическим данным.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Элементы температурной стабилизации рабочей точки транзистора и их выбор.

2. Работа резисторного касакада в области НЧ.

3. Работа резисторного касакада в области ВЧ.

4. Влияние разднлительного конденсатора Ср на характеристики усилителя.

5. Влияние коллекторного сопротивления Rк на верхнюю граничную частоту и номинальный коэффициент усиления.

6. Принцип работы индуктивной ВЧ - коррекции резисторного усилителя.

7. АЧХ усилителя при оптимальных и неоптимальных параметрах элементов ВЧ - коррекции.

8. ПХ усилителя при оптимальных и неоптимальных параметрах элементов ВЧ - коррекции.

9. Принцип работы НЧ - коррекции резисторного усилителя.

10. АЧХ усилителя при оптимальных и неоптимальных параметрах элементов НЧ - коррекции.

11. ПХ усилителя при оптимальных и неоптимальных параметрах элементов НЧ - коррекции.

7. Л И Т Е Р А Т У Р А.

1. Остапенко Г. С. Усилительные устройства. - М. : Радио и связь, 1989 , подразделы 1.4, 1.5, 3.2, 4.8.

2. Войшвилло Г. В. Усилительные устройства. - М. : Радио и связь, 1983 , подразделы 4.1.1, 4.7.3, 5.3.1, 5.3.3.

3. Мамонкин И. Г. Усилительные устройства. - М. : Связь, 1977 , подразделы 6.3, 7.3, 11.3.


Звенья вещательных каналов вносят амплитудно-частотные искажения. Это означает, что их коэффициент передачи или затухание является функцией частоты и частотная характеристика коэффициента передачи отличается от горизонтальной прямой.

Во многих вещательных устройствах величину амплитудно-частотных искажений, проявляющихся как спад коэффициента передачи на крайних частотах, сводят к нормированному значению рациональным построением электрической схемы, выбором величин ее элементов и режима работы, применением отрицательной обратной связи. Но амплитудно-частотные характеристики некоторых звеньев вещательного канала, соединительных линий, устройств звукозаписи и звуковоспроизведения, междугородных линий, линий проводного вещания не имеют горизонтального участка. В этих случаях амплитудно-частотные искажения уменьшают, включая в вещательный канал особую цепь--корректирующий контур КК.

Принципы корректирования

Амплитудно-частотная характеристика КК должна быть такой, чтобы общая амплитудно-частотная характеристика искажающего звена и. КК в заданной полосе частот от fmax до fmin была горизонтальной прямой. Итак, условие частотной коррекции искажающего звена:

где и - соответственно коэффициент затухание (передачи) искажающего звена и корректирующего контура.

К методам корректирования амплитудно-частотных искажений по техническим приемам и способам расчета близки методы частотных предыскажений. Частотными предыскажениями называют искусственное искажение спектра вещательного сигнала с целью улучшения ОСШ. Частотные предыскажения широко применяют в каналах подачи вещательных программ, например в соединительных линиях, в устройствах звукозаписи, в радиовещании с частотной модуляцией.

Поскольку СЛ включают в вещательный канал в различных произвольных комбинациях, их рассматривают как самостоятельные звенья канала. Нежелательна компенсация амплитудно-частотных искажений, вносимых СЛ, в других звеньях канала - ЛУ или ПУ, так как в том случае невозможно маневрировать усилителями и СЛ и присоединять к любому усилителю любую СЛ. Каждая СЛ должна быть скорректирована, независимо от других звеньев канала. Идентичность АЧХ скорректированных СЛ облегчает их эксплуатацию и взаимное резервирование. АЧХ скорректированной СЛ должна укладываться в пределы шаблона:

В СЛ применяют принципиально иные метода корректирования АЧХ, чем в линиях проводного вещания. Ввиду большого количества СЛ, последовательно включаемых в вещательный канал, требуется высокая точность корректирования (см. табл. 1).

Соединительные линии нагружены на активное сопротивление, величина которого соизмерима с модулем волнового сопротивления СЛ. В этих условиях затухание СЛ монотонно возрастает с частотой. Физически это явление может быть объяснено с помощью эквивалентной схемы.

Она справедлива, если длина линии не превосходит четверти длины волны передаваемого сигнала, т.е. при электрически короткой линии. Сопротивление проводов линии вместе с сопротивлением, образованным сопротивлениями активных и емкостных утечек между проводами линии, и сопротивлением нагрузки образуют делитель напряжения. С увеличением частоты модуль увеличивается, а модуль уменьшается. Поэтому коэффициент передачи этой цепи с увеличением частоты уменьшается, а затухание растет.

Дополнительные амплитудно-частотные искажения возникают из-за изменения входного сопротивления соединительной линии по диапазону частот. Поскольку СЛ является нагрузкой ЛУ, изменения входного сопротивления СЛ приводят к изменению падения напряжения на внутреннем сопротивлении источника вещательного сигнала - ЛУ. Но при малой величине внутреннего сопротивления ЛУ эти искажения незначительны, и их не учитывают.

Для корректирования АЧХ СЛ используют особый четырехполюсник с сосредоточенными параметрами - корректирующий контур (КК). Его затухание в рабочем диапазоне частот должно изменяться так, чтобы общее затухание СЛ и КК не зависело от частоты. Предположение, что общее затухание СЛ и КК равно сумме затуханий и справедливо лишь в том случае, когда входное сопротивление КК постоянно в рабочем диапазоне частот и равно сопротивлению нагрузки. В противном случае при подключении КК к СЛ изменится нагрузка СЛ и изменится ее затухание.

Наибольшее затухание КК должен вносить на низшей рабочей частоте. До частот 500-700 Гц затухание должно оставаться примерно постоянным, а затем плавно спадать до нуля на высшей рабочей частоте.Физические свойства СЛ и КК различны; линия - четырехполюсник с распределенными параметрами, КК,- четырехполюсник с сосредоточенными параметрами. Поэтому достичь с помощью КК полной компенсации амплитудно-частотных искажений, вносимых СЛ, невозможно.

Чем больше будет взято точек на оси частот, для которых затухание КК должно совпасть с затуханием, полученным из идеализированной кривой, тем сложнее схема КК.

КК должен иметь минимальное количество настраиваемых (подбираемых) элементов. На высшей частоте затухание КК должно приближаться к нулю. Включение КК не должно изменять частотной характеристики затухания сопряженного с ним звена, в данном случае, СЛ, иначе частотное корректирование превратиться в сложный и трудоемкий процесс эмпирического подбора элементов КК. При включении КК в конце СЛ следует применять КК с постоянным входным сопротивлением, а при включении в начале СЛ - с минимальным выходным сопротивлением. Уменьшение выходного сопротивления КК желательно и при включении КК в конце СЛ, так как при этом уменьшаются напряжения внешних помех наводимые на входную цепь усилителя, следующего после КК. Постоянство входного сопротивления полезно и в тех случаях, когда КК включен перед СЛ, так как это стабилизирует режим ЛУ.

Следовательно, КК должен иметь постоянное входное сопротивление, минимальное выходное сопротивление, минимальное затухание на высшей рабочей частоте и наименьшее количество настраиваемых элементов.

Основные схемы КК:


Простейший двухполюсник, включаемый в цепь последовательно с нагрузкой или параллельно нагрузке, не дает хорошего корректирования, так как входное сопротивление такого КК зависит от частоты и изменяет ход частотной характеристики СЛ.

Полный параллельный контур обладает постоянным входным сопротивлением и большим выходным сопротивлением, изменяющимся с частотой. Полный последовательный контур имеет постоянное входное сопротивление и небольшое выходное сопротивление, также изменяющееся с частотой. По этой причине полный последовательный контур наиболее пригоден для корректирования СЛ. Т-образный мостовой контур обеспечивает постоянство входного сопротивления, но его выходное сопротивление больше, чем у полного последовательного. Поэтому он менее подходит для корректирования СД, хотя в типовой аппаратуре встречается довольно часто.

Степень сложности двухполюсников, и зависит от требуемой точности корректирования. Если двухполюсники и с содержат по два элемента, причем, образован параллельным соединением активного сопротивления и емкости, -последовательным соединением активного сопротивления и индуктивности, то расчетная характеристика затухания совпадет с идеализированной в двух точках - на (практически, в области низших частот) и на. Если, - трехэлементные, то совпадение получается в трех точках. При повышении требований к точности корректирования АЧХ одного КК оказывается недостаточно. Тогда используют два и более КК, причем дополнительные КК служат для корректирования неравномерности АЧХ, остающейся после введения первого КК.

Усложнение КК по экономическим причинам нежелательно. Поэтому обычно ограничиваются условием совпадения идеализированной и расчетной кривой затухания КК в трех точках, в качестве которых берут, и одну промежуточную. Расчетные формулы существенно упрощаются, если в качестве промежуточной точки принять частоту, на которой затухание КК равно половине максимального.

Схемы двухполюсников и синтезируют на основе следующих соображений.

В области низших частот сопротивления и должны быть чисто активными. На высшей расчетной частоте, должно обращаться в нуль, а приближаться к бесконечности. Этого можно достичь, выполнив в виде последовательного, a в виде параллельного колебательного контура. Резонансные частоты контуров должны быть равны и совпадать с высшей частотой рабочего диапазона. Затухание КК в области низших частот определяется соотношением и:

Крутизна частотной характеристики затухания КК растет с увеличением отношения, соответственно при этом увеличивается частота половинного затухания. Потери в колебательных контурах уменьшает точность корректирования на высших частотах. Поэтому катушки индуктивности и должны иметь возможно меньшее активное сопротивление. Конденсаторы и должны иметь малые диэлектрические потери.

Что же нам может дать цифровая обработка в акустических системах? Во-первых, хочу сразу оговорить, что не существует волшебной платы, установив которую в недорогую систему, получим волшебный звук. Акустические проблемы колонки должны лечиться акустическим путем. Например, нельзя устранить цифровой обработкой проблемы, связанные с резонансами корпуса акустической системы, стоячими звуковыми волны внутри корпуса, органные резонансами трубы фазоинвертора. В первую очередь нужна правильно спроектированная акустическая система с хорошо подобранными компонентами. Но все же некоторые параметры поддаются коррекции с помощью цифровой обработки звука. Рассмотрим результаты на живом примере.

В качестве подопытного кролика используем систему CL3212 производства фирмы PARK AUDIO. Система представляет собой громкоговоритель состоящий из 12” головки 12CL76 и 1” драйвера DE250 производства итальянской фирмы B&C Speakers(Италия). Для начала рассмотрим работу пассивной системы. Пассивная система – это система, не имеющая встроенного усилителя и использующая для разделения частотного спектра на полосы пассивный кроссовер. В системе CL3212 для низкочастотного динамика использован фильтр 2-го порядка с крутизной спада 12 дБ/октаву а для высокочастотного динамика — фильтр 3-го порядка с крутизной спада 18 дБ/октаву.


Рис.1 Теперь проведем измерения акустической АЧХ на расстоянии 1 метр от колонки


Рис.2 АЧХ пассивной системы CL3212, измерена на расстоянии 1 метр, подводимая мощность – 1Вт

Мы видим, что в то время, как АЧХ системы достаточно линейна, фазовая характеристика этим похвастаться не может. Возможности пассивного фильтра ограничены. В частности довольно сложно с его помощью совместить акустические центры головок. Для этого требуется вводить задержку электрического сигнала, подаваемого на одну из головок, а в пассивном фильтре это сложно реализовать. Можно попытаться откорректировать АЧХ пассивной системы с помощью параметрической эквализации.


Рис.3 АЧХ эквализированной пассивной системы CL3212, измерена на расстоянии 1 метр, подводимая мощность – 1Вт

Зеленый – суммарная АЧХ системы Красный – фазочастотная характеристика

Как мы видим, АЧХ системы стала более линейной, но ФЧХ выровнять не удалось. Современные методы цифровой обработки сигналов позволяют решить эту проблему. Предварительно хотелось бы немножко рассказать о теоретических основах. В описаниях акустических систем или звуковых процессоров периодически встречается термин – FIR фильтрация.

Что это такое? Вкратце рассмотрим разницу между двумя классами фильтров, применяемыми в обработке звука: IIR фильтры От Infinite Impulse Response, на русском – фильтры с бесконечной импульсной характеристикой. Это цифровая реализация привычных нам аналоговых фильтров. Описываются они привычными нам терминами: фильтр верхних частот Батерворта 4-го порядка (крутизна спада 24 дБ/октаву), частота среза 1500 Гц. Также к этому типу фильтров относятся параметрические корректоры АЧХ (привычные нам эквалайзеры). Они обычно описываются параметрами: частота настройки, уровень подъема/спада и ширина полосы или добротность). Такие фильтры просты в реализации. Они являются так называемыми минимально-фазовыми фильтрами. Это означает, что любое изменение АЧХ неизбежно меняет фазовые соотношения в сигнале. Чем выше крутизна среза фильтра или добротность полосового фильтра – тем больше получаем сдвиг фаз на частоте среза.

FIR фильтры От Finite Impulse Response, на русском – фильтры с конечной импульсной характеристикой. В аналоговом виде такие фильтры реализовать невозможно. Главным достоинством FIR фильтров является то, что они позволяют корректировать АЧХ сигнала, не влияя на его фазу. С ними мы можем использовать разделительные фильтры, не вносящие сдвига фаз на частоте перегиба и использовать эквализацию, не вносящую фазовых сдвигов на корректируемых частотах. В общем можно сказать так: эти фильтры делают именно то, что должны делать, и ничего более. Но, к сожалению, не обходится и без недостатков. FIR фильтры вносят задержку в обрабатываемый сигнал, причем, чем более низкочастотный сигнал нам нужно обработать, тем большую временную задержку внесет наш фильтр. Если для бытовых систем, которые обычно работают самостоятельно, можно позволить довольно большие величины задержки, то в профессиональной акустической системе, которая практически всегда работает совместно с другими системами (например с сабвуферами) задержки более 2 мсек недопустимы. Поэтому частотный диапазон обработки FIR фильтров обычно ограничивается средними и высокими частотами. Для коррекции низкочастотного диапазона используют традиционные IIR фильтры. Давайте посмотрим, какой станет наша система после разделения полос и коррекции АЧХ с помощью FIR фильтров. Настроим эту же систему в активной Bi-Amp конфигурации. Каждая из головок подключена к своему каналу усиления, а разделительные фильтры и коррекция АЧХ реализованы с помощью процессора (DSP), входящего в состав усилительного модуля DX700DSP.


Рис.4 АЧХ системы CL3212, раздельные усилители НЧ и ВЧ, обработка с использованием FIR фильтрации. Измерена на расстоянии 1 метр, подводимая мощность – 1Вт

Зеленый – суммарная АЧХ системы Красный – фазочастотная характеристика

Как мы видим, АЧХ системы превратилась практически в прямую линию, фазочастотная характеристика в области средних частот также стала практически прямой линей. В области низких частот выровнять фазу не удается, т.к. вследствие больших задержек обработки на низких частотах нельзя использовать FIR фильтрацию Теперь попытаемся понять, как влияет линейность фазовой характеристики на воспроизведение звука акустикой. Для тестирования используем в качестве тестового сигнала меандр (прямоугольные импульсы). «Идеальный» меандр представляет собой сумму бесконечного числа синусоид, каждая из которых имеет свою амплитуду и фазу. Поэтому при прохождении меандра через аудиосистему можно выявить проблемы в временной области. Все синусоидальные компоненты должны быть переданы системой без искажений времени прихода для того, чтобы получить на выходе опять прямоугольную волну. Важно осознавать, что задержка по времени системы не должна быть равна нулю. Но она должна быть одинаковой для всех частот в пределах полосы пропускания системы. Такое условие будет легко выполняться, если тестируемая система имеет ровную фазовую характеристику. Даже притом, что никто не слушает меандр через акустические системы, он представляет собой четкий тестовый сигнал, глядя на который очень легко увидеть временные искажения сигнала, проходящего через громкоговоритель. Амплитудные или временные искажения сразу видны и это помогает понять причины искажений. Итак, попробуем пропустить прямоугольный сигнал через нашу систему с пассивным фильтром:


Рис. 5 Меандр на выходе CL3212 с пассивным фильтром

На фронтах полученных импульсов видна неидеальная временная стыковка сигналов от НЧ и ВЧ головок, а на плоской части – неравномерность, вызванная неравномерностью АЧХ системы. Это дает нам два ключа для улучшения формы выходного сигнала: — сгладить частотную характеристику. — улучшить временную стыковку динамиков между собой (это даст, в том числе, выравнивание фазовой характеристики системы). Теперь проведем аналогичное измерение для активной системы с FIR фильтрацией.


Рис. 6 Меандр на выходе CL3212 с раздельными усилителями НЧ и ВЧ, обработка с использованием FIR фильтрации.

Мы видим, что исчезли все временныенестыковки на фронтах сигнала, плоская часть импульса стала совершенно ровной. Переходные характеристики системы ощутимо улучшились. Это благоприятно скажется на четкости и прозрачности воспроизведения звука акустической системой. Система также станет более предсказуемой при попытках ее дополнительной эквализации в конкретных акустических условиях. Многочисленные прослушивания подтвердили эти результаты.