ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Что такое жк монитор. LCD-мониторы

Большинство современных LCD мониторов имеют достаточно простое построение, если рассматривать его на уровне чипов, т.е. в мониторе мы видим сейчас две или три крупных микросхемы. Функциональное назначение этих микросхем в большинстве случаев является типовым, несмотря на то, что выпускаются они разными производителями и имеют различную маркировку. А так как микросхемы выполняют одинаковые функции, то их входные/выходные сигналы будут практически идентичными, т.е. основное отличие микросхем заключается в их характеристиках и цоколевке корпуса. Именно поэтому к большинству современных LCD мониторов, невзирая на множество их торговых марок и множество различных моделей, можно применять одинаковые подходы при диагностике неисправностей и ремонте. Кроме идентичной функциональной схемы, почти все LCD мониторы имеют одну и ту же схему компоновки, т.е. практически все производители пришли к одинаковой схеме распределения электронных компонентов монитора по различным печатным платам.

Итак, если посмотреть на современный LCD монитор, то внутри него мы найдем, как правило, саму LCD-панель и три печатные платы (рис.1):

Рис.1

- основную плату управления и обработки сигналов (Main PCB );

- плату блока питания и инвертора задней подсветки (Power PCB );

- плату лицевой панели управления.

Межблочные связи при такой компоновке монитора демонстрирует рисунок 2.

Рис.2

Многие современные мониторы могут использоваться как USB-хаб, к которому могут подключаться различные USB устройства. Поэтому в составе монитора может появиться еще одна печатная плата, соответствующая USB-хабу, но наличие этой платы, естественно, является опциональным.

На основной плате управления располагаются микропроцессор монитора и скалер. Этой платой осуществляется обработка входных сигналов монитора и преобразование их в сигналы управления LCD-панелью. Именной этой платой во многом определяется качество изображения, воспроизводимого на экране монитора. Основное отличие моделей мониторов друг от друга заключается в конфигурации этой печатной платы, в типе установленных на ней микросхем и в их "прошивке".

Плата лицевой панели управления представляет собой узкую печатную плату, на которой расположены только лишь кнопки и светодиод.

Плата источников питания (в документации LG ее обозначают, как LIPS ), представляет собой комбинированный источник питания, который состоит из двух импульсных преобразователей: основного блока питания и инвертора задней подсветки. Этой платой формируются все основные напряжения, необходимые для работы и основной платы, и LCD-панели, а также формируется высоковольтное напряжение для ламп задней подсветки. Именно эта печатная плата дает наибольшее количество различных проблем и отказов LCD-мониторов.

Но существует и второй вариант компоновки, при котором кроме LCD-матрицы в мониторе имеется четыре печатные платы:

- основная плата управления и обработки сигналов (Main PCB );

- плата блока питания (Power PCB );

- плата инвертора задней подсветки (Back Light Inverter PCB );

- плата лицевой панели управления.

В данном варианте компоновки блок питания и инвертор задней подсветки представляют собой отдельные печатные платы (рис.3).

Рис.3

Межблочные связи, характерные для такой компоновки монитора, представлены на рис.4. В качестве примера здесь можно представить мониторы LG FLATRON L1810B и L1811B.

Рис.4

Прежде чем говорить о различных вариантах схемотехники LCD дисплеев, дадим краткие характеристики основным компонентам, из которых они состоят.

Микропроцессор

Микропроцессором, который в различных источниках может обозначаться как CPU, MCU и MICOM , осуществляется общее управление монитором. Основными его функциями являются:

- формирование сигналов для включения и выключения задней подсветки;

- управление яркостью ламп задней подсветки;

- настройка режима работы скалера;

- формирование сигналов управляющих работой скалера;

- обработка и контроль входных синхросигналов HSYNC и VSYNC;

- определение режима работы монитора;

- определение типа входного интерфейса (D-SUB или DVI);

- обработка сигналов от лицевой панели управления.

Управляющая программа микропроцессора, как правило, находится в его внутреннем ПЗУ, т.е. эта программ "прошита" в микропроцессоре. Однако часть управляющего кода, и особенно различные данные и переменные хранятся во внешней энергонезависимой памяти, которая представляет собой электрически перепрограммируемое ПЗУ – EEPROM. Микропроцессор имеет прямой доступ к микросхемам EEPROM.

Микропроцессор, как правило, является 8-разрядным и работает на тактовых частотах порядка 12 – 24 МГц. Микропроцессор, на самом деле, является однокристальным микроконтроллером, в составе которого, кроме CPU имеются еще:

- многоцелевые цифровые порты ввода/вывода с программируемыми функциями;

- аналоговые входные порты и цифро-аналоговый преобразователь;

- тактовый генератор;

- ПЗУ;

- ОЗУ и другие элементы.

EEPROM

В энергонезависимой памяти, в первую очередь, хранятся данные о настройках монитора и заданные пользователем установки. Эти данные извлекаются из EEPROM в момент включения монитора и инициализации микропроцессора. При каждой настройке монитора и установке нового пользовательского значения какого-либо параметра изображения, эти новые значения переписываются в EEPROM, что позволяет их сохранить. В современных мониторах в качестве EEPROM , в основном, применяются микросхемы с последовательным доступом по шине I2C (сигналы SDA и SCL ). Это микросхемы типа 24C02, 24C04, 24C08 и т.д.

DDC- EEPROM

Все современные мониторы поддерживают технологию Plug&Play, которая предполагает передачу от монитора в сторону ПК паспортной и конфигурационной информации о мониторе. Для передачи этих данных используется последовательный интерфейс DDC, которому на интерфейсе соответствую сигналы DDC-DATA (DDC-SDA) и DDC-CLK (DDC-SCL) . Сама паспортная информация хранится в еще одном EEPROM, который, практически, напрямую соединен с интерфейсным разъемом. В качестве EEPROM используются те же микросхемы 24C02, 24C04, 24C08 , а также может использоваться и более специализированная – 24C21 .

Формирователь RESET

Схема формирования сигнала RESET обеспечивает контроль питающего напряжения микропроцессора. Если это напряжение становится ниже допустимого значения, работа микропроцессора блокируется установкой сигнала REST в низкий уровень. В качестве формирователя сигнала чаще всего используется микросхема Low Drop стабилизатора, типа KIA7042 или KIA7045.

Скалер

Микросхемой скалера осуществляется обработка сигналов, приходящих от ПК. Скалер в большинстве случаев представляет собой многофункциональную микросхему, в состав которой обычно входят:

- микропроцессор;

- ресивер (приемник) TMDS, которым обеспечивается прием и преобразование в параллельный вид данных, передаваемых по интерфейсу DVI;

- аналого-цифровой преобразователь – АЦП (ADC), которым осуществляется преобразование входных аналоговых сигналов R/G/B;

- блок ФАПЧ (PLL), который необходим для корректного аналого-цифрового преобразования и синхронного формирования сигналов на выходе АЦП;

- схема масштабирования (Scaler), которая обеспечивает преобразования изображения с входным разрешением (например, 1024х768) в изображение с разрешением LCD-панели (например, 1280х1024);

- формирователь OSD;

- трансмиттер (LVDS), который осуществляет преобразование параллельных данных о цвете в последовательный код, передаваемый на LCD-панель по шине LVDS.

Кроме этих основных элементов, в составе некоторых скалеров можно выделить еще схему гамма-коррекции, интерфейс для работы с динамической памятью, схему фрейм-граббера, схемы конвертации форматов (например, YUV в RGB) и т.п.

Фактически, скалер является микропроцессором, оптимизированным под выполнение вполне определенных задач – обработку изображения. Скалер настраивается на формат входных сигналов, получая соответствующие команды от центрального процессора монитора.

Если в составе монитора имеется фрейм-буфер (оперативная память), то работа с ним является функцией именно скалера. Для этого многие скалеры оснащаются интерфейсом для работы с динамической памятью.

Пример функциональной схемы скалера GM5020, используемого в мониторе LG FLATRON L1811B, представлен на рис.5. Особенностью этого скалера является то, не содержит внутреннего LVDS-трансмиттера, и формирует сигналы цвета в виде параллельного 48-разрядного потока цифровых данных. При использовании скалера GM5020 требуется еще и внешний LVDS-трансмиттер, представляющий собой специализированную микросхему.

Рис.5

Фрейм-буфер

Фрейм-буфер – это оперативная память достаточно большой емкости, которая используется для сохранения образа изображения, выводимого на экран. Эта память требуется при преобразовании (масштабировании) изображения, т.е. когда входное разрешение не совпадает с разрешением LCD-панели. В качестве фрейм-буфера используется память динамического типа, чаще всего SDRAM. Емкость этой памяти определяет разработчиком, исходя из формата LCD-панели и ее цветовых характеристик.

DC-DC преобразователь

Этим модулем обеспечивается формирование всех постоянных напряжений, необходимых для работы монитора. Этими напряжениями являются: +5V, +3.3V, +2.5V или +1.8V. Преобразователи представляю собой либо линейные, либо импульсные преобразователи постоянного напряжения.

Буфер синхросигналов

Буфер синхросигналов, представляют собой усилители, выполненные либо на транзисторах, либо на микросхемах мелкой логики. Буфером обеспечивается усиление и буферизация входных сигналов синхронизации HSYNC и VSYNC . Часто буферы управляются микропроцессором, что позволяет выбрать источник сигнала, а также выбрать тип синхронизации (раздельная, композитная или SOG ).

Инвертор

Инвертор формирует высоковольтное и высокочастотное напряжение для ламп задней подсветки. Представляет собой импульсный высокочастотный преобразователь, который из напряжения +12V создает импульсное напряжение амплитудой около 800В .

Блок питания

Блоком питания из переменного напряжения сети формируются постоянные напряжения +12В и +5В, используемые для питания всех каскадов монитора. Блок питания является импульсным и может представлять собой как внешний сетевой адаптер, так и внутренний модуль монитора, хотя в мониторах, представленных в данном обзоре, блок питания является внутренним.

Подавляющее большинство LCD мониторов можно отнести к одному из трех базовых вариантов схемотехники, которые попытаемся охарактеризовать.

1) Первый вариант характеризуется наличием на MAIN BOARD двух основных микросхем: микросхемы микропроцессора и микросхемы скалера. Микропроцессором осуществляется общее управление компонентами монитора, а скалер осуществляет преобразование цветовых сигналов, т.е. осуществляет подстройку изображения под разрешение LCD-панели. При этом скалер обрабатывает данные "на лету", т.е. без предварительного сохранения образа изображения в промежуточной памяти. Поэтому микросхемы памяти в таком варианте схемотехники не используются. Блок-схема такого LCD-монитора демонстрируется на рис.6.

Рис.6

2) Второй вариант (рис.7)отличается от первого наличием в мониторе микросхем памяти, которые часто называют буфером фрейма (Frame Buffer). Наличие микросхем памяти характерно для мониторов более высокого класса, которые способны работать с изображениями различных входных форматов, в том числе и телевизионных. К этому классу мониторов в большей степени относятся 18-дюймовые мониторы, например FLATRON L1811B.

Рис.7

3) Третий вариант характеризуется наличием на основной плате MAIN BOARD всего одной "активной" микросхемы. Под термином" активная микросхема" мы подразумеваем микросхему, имеющую собственную систему команд, программируемую под выполнение различных функций и способную выполнять какую-либо обработку сигналов. В некоторых мониторах (например, в FLATRON L1730B и L1710S), мы видим всего одну такую микросхему, которая совмещает в себе и функции микропроцессора и функции скалера. Так как подобные микросхемы могут использоваться в различных моделях мониторов, и так как в составе микросхемы имеется микропроцессор, для работы которого требуется наличие управляющих кодов, то на плате MAIN BOARD мы найдем еще и микросхему постоянного запоминающего устройства – ПЗУ (ROM). Эта микросхема, которая чаще всего является 8-разрядным ПЗУ с параллельным доступом, содержит управляющую программу для работы комбинированной микросхемы скалера-микропроцессора. Часто микросхема ПЗУ является электрически перепрограммируемой, и поэтому ее часто обозначают, как FLASH. Практически во всех мониторах LG в качестве ПЗУ используются микросхема семейства AT49HF. Блок-схема мониторов с такой схемотехникой представлена на рис.8.

Рис.8

Кроме этих трех вариантов построения монитора можно ввести и еще один вариант. Он отличается тем, что в мониторе используется такой скалер, который не имеет встроенного LVDS-трансмиттера. В этом случае трансмиттеру соответствует отдельная микросхема, которая устанавливается на основной плате между скалером и LCD-панелью. LVDS-трансмиттер осуществляет преобразование параллельного (24 или 48 разрядного) цифрового потока данных, сформированного скалером, в последовательные данные шины LVDS. LVDS-трансмиттер представляет собой микросхему общего применения, которая может использоваться в любых мониторах. Такая схемотехника, с внешним LVDS-трансмиттером, также характерна, в большей степени, для мониторов более высокого класса, т.к. в них применяются специализированные скалеры с меньшим количеством дополнительных функций. Пример блок-схемы монитора с подобной схемотехникой представлен на рис.9. В качестве примере монитора с таким построением, можно назвать модель LG FLATRON L1811B .

Рис.9

Здесь были рассмотрены лишь базовые варианты современной схемотехники, хотя во всем многообразии моделей и торговых марок LCD-мониторов можно встретить самые различные комбинации представленных блок-схем. В сводной таблице 1 отражены типы применяемых микросхем и особенности схемотехники наиболее массовых моделей мониторов LG.

Таблица 1. Особенности схемотехники TFT-мониторов компании LG

Модель монитора

Вариант компоновки

Вариант схемотехники

Типы основных микросхем

Тип используемой

LCD панели

CPU

Скалер

LVDS

L1510S

см. рис.1

см. рис.6

MTV312

MST9011

LM150X06-A3M1

L1510P

см. рис.1

см. рис.6

MTV312

MST9051

LM150X06-A3M1

L1511S

см. рис.1

см. рис. 9

MTV312

GMZAN2

THC63LVDM83R

1) LM150X06-A3M1

2) LM150X07-B4

L1520B

см. рис.1

см. рис.6

MTV312

MST9011

LM150X06-A4C3

L1710S

см. рис.1

см. рис. 8

GM2121

1) HT17E12-100

2) M170EN05

L1710B

см. рис.1

см. рис.6

MTV312

MST9151

1) LM170E01-A4

2) HT17E12-100

3) M170EN05V1

L1715 /16 S

см. рис.1

см. рис.6

MTV312

MST9111

LM170E01-A4

L1720B

см. рис.1

см. рис.6

MTV312

MST9111

1) LM170E01-A4

2) LM170E01-A5K6

3) LM170E01-A4K4

4) LM170E01-A5

L1730B

см. рис.1

см. рис. 8

GM5221

1) LM170E01-A5K6

2) LM170E01-A5N5

3) LM170E01-A5KM

L1810B

см. рис. 3

см. рис.6

MTV312

MST9151

1) LM181E06-A4M1

2) LM181E06-A4C3

L1811B

см. рис. 3

см. рис. 9

68HC08

GM5020

THC63LVD823

1) LM181E05-C4M1

2) LM181E05-C3M1

L1910PL

см. рис.1

см. рис.6

MTV312

MST9151

FLC48SXC8V-10

L1910PM

см. рис.1

см. рис.6

MTV312

MST9151

FLC48SXC8V-10

Аналитический обзор данных, представленных в таблице 1, позволяет сделать несколько интересных выводов.

Во-первых , практически все, представленные в таблице 1 мониторы, имеют одинаковую схему компоновки, которая, кстати, характерна практически для всех современных мониторов, независимо от фирмы-производителя.

Во-вторых , LG в своих мониторах в качестве управляющего процессора использует, преимущественно, микроконтроллер MTV312 , разработанный фирмой MYSON TECHNOLOGY . Этот микроконтроллер в своей основе имеет известнейший микропроцессор 8051. Кроме того, в состав микроконтроллера входят ОЗУ, Flash-ПЗУ, АЦП, процессор синхронизации, цифровые порты и целый ряд других элементов.

В-третьих, необходимо отметить, что в некоторых моделях мониторов могут использоваться различные типы LCD-панелей. Так, например, под крышкой мониторов, продаваемых под торговой маркой FLATRON 1710B , можно встретить LCD-панели трех разных типов: LM170E01-A4, HT17E12-100, M170EN05V1 , и это является весьма распространенной практикой практически всех производителей мониторов. Но интересным является тот факт, что иногда фирма LG в своих мониторах использует панели других производителей, являясь при этом крупнейшим мировым их производителем. Принадлежность LCD-панели можно определить по ее маркировке, первые буквы которой и определяют производителя:

LM – панели производства LG-PHILIPS

HT – панели производства HITACHI

M – панели производства AUO

FLC – панели производства FUJITSU

Представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом.

В чем преимущество ЖК-монитора? Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек. Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения.

Также он является одной из причин успеха портативных компьютеров - иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости. Поскольку со временем технология и производство становятся более дешевыми, стоимость мониторов с плоским экраном или HD-телевизоров продолжала снижаться. В конечном итоге ЖК-панели полностью заменили традиционные электронно-лучевые трубки, так же, как транзисторы сменили вакуумные лампы.

Принцип работы ЖК-монитора

Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.

Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).

Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана - крученном нематическом - направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются. Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.

Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается. В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.

Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение - являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.

Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).

Мультиплексорный экран

Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.

Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).

Цветные экраны

В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

Пассивная матрица

Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.

Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.

Активные матричные технологии

В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.

Скрученный нематик (TN)

TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.

3LCD-технология

Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. - и в Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.

IPS-технология

Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного в ноутбуках.

Экраны нулевой мощности

Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений - «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.

Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.

Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.

Контроль качества

ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными - 16.

Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина - только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.

100% гарантия

Ряд производителей, особенно южнокорейских, поскольку там находятся одни из крупнейших фабрик по производству ЖК-панелей (например, LG), сегодня гарантируют отсутствие неисправных пикселей и производят замену экрана даже с единственным дефектом. Даже если такая гарантия не предоставляется, важно расположение дефектных участков. Экраны с несколькими неисправными ячейками могут быть непригодны, если они расположены рядом друг c другом. Кроме того, производители могут произвести замену панели в том случае, если дефект расположен в центре дисплея.

Диагностика и ремонт мониторов

Ниже приведены наиболее часто встречающиеся неисправности и методы их устранения.

Индикатор питания горит постоянно, но изображение отсутствует. Вероятна поломка подсветки или ее инвертора. Простейший способ диагностики ЖК-монитора - включить воспроизведение видео и направить яркий луч либо почти параллельно экрану, либо перпендикулярно. Это позволит увидеть изображение даже без подсветки. Ремонт монитора заключается в замене лампы подсветки или, скорее всего, ее инвертора.

Индикатор питания мигает. В этом случае необходимо проверить, поступает ли в дисплей сигнал - вероятно повреждение кабеля либо разъема. Если все в порядке, то основную причину неисправности для конкретной марки монитора следует поискать в интернете. Например, для Dell 1702FP - это выход из строя некоторых конденсаторов. Простейший выход в этом случае - заменить все емкости. Также можно шунтировать неисправный конденсатор заведомо исправным.

Индикатор питания не загорается. Вероятная причина - поломка блока питания монитора. Можно попробовать его заменить, купив новый или воспользовавшись запчастями от старого дисплея. Другая возможная причина - КЗ конденсатора (его легко найти визуально) и перегорание предохранителя. В этом случае их следует заменить.

Вертикальные или горизонтальные линии. Если монитор работает, но имеет линии, простирающиеся на всю ширину или высоту экрана или раздваивание изображения по вертикали или горизонтали, то вероятным виновником является транзистор или соединение дисплея. Если один из сотен разъемов неисправен или закорочен, то это сказывается на всем ряду пикселей. Для ноутбуков иногда достаточно сжать проблемный участок и проблема уйдет на годы. Для дисплея ПК потребуется снять заднюю панель, чтобы добраться до неисправного соединения и приложить к нему давление.

Особенности ухода

Иногда качество изображения можно восстановить с помощью простой салфетки для ЖК-мониторов. Она устранит пыль, пятна от еды, отпечатки пальцев, следы насекомых, грязь и разводы.

Лучше использовать профессиональные средства, такие как чистящие спреи и пены-аэрозоли, но их можно заменить разведенным в равных пропорциях изопропиловым спиртом или уксусом.

Не следует использовать средства на основе спирта, аммиака или ацетона, поскольку они способны нанести вред экрану, особенно антибликовому покрытию.

Чистящее средство следует наносить на салфетку, а не на загрязнение.

Протирая дисплей, нельзя применять силу.

Нельзя включать монитор до полного его высыхания.

Недостатки

ЖК-технология по-прежнему отличается некоторыми недостатками в сравнении с другими подходами:

  • Если электро-лучевые трубки могут работать с разным разрешением, не привнося искажений, ЖКД обеспечивают четкость только в случае их «родного разрешения». При попытке установить неподдерживаемые параметры экрана, изображение масштабируется, становится размытым или «блочным».
  • ЖК-панели обеспечивают более низкую контрастность, чем плазменные или светодиодные. Причиной этого является то, что свет часто проникает через поляризационный фильтр и вместо черного цвета отображается серый. Однако при ярком внешнем освещении контрастность ЖКД может превышать данный показатель некоторых других дисплеев по причине большей максимальной яркости.
  • ЖК-экраны отличаются большим временем отклика, чем плазменные аналоги, создавая видимые ореолы при быстром движении изображения, хотя этот показатель по мере развития технологии постоянно улучшается и в современных ЖК-панелях практически незаметен. Большинство TN- и IPS-дисплеев имеют время отклика 5-8 мс.
  • Овердрайв, применяемый в некоторых панелях, приводит к тому, что на участках изменяющегося изображения возникают артефакты в виде повышенного шума или ореолов. Причиной этого побочного эффекта является стремление пикселей достичь предполагаемой яркости (или напряжения, которое требуется для прохождения нужного количества света), после чего они возвращаются к целевому уровню, обеспечивая лучшее время отклика.
  • ЖК-дисплеи отличаются ограниченными углами обзора, из-за чего одновременно смотреть на экран может меньшее число зрителей. При достижении предельного угла контрастность и цветопередача ухудшаются. Но некоторые производители используют этот эффект, предлагая намеренно ограниченный обзор ЖК-монитора с целью обеспечения большей конфиденциальности, например, при пользовании ноутбуком в общественных местах. Кроме того, это позволяет создать для одного наблюдателя 2 различных изображения, создавая стереоскопический эффект.
  • Некоторые старые ЖК-мониторы могут вызвать мигрени и проблемами со зрением по причине мерцания ламп подсветки, работающих с частотой сети 50 Гц. В современных экранах это устранено с переходом на питание высокочастотным током.
  • ЖК-дисплеи иногда страдают от выгорания. По мере развития технологии данная проблема снижается, поскольку появляются новые методы ее устранения. Иногда экран можно восстановить путем длительного отображения белого изображения.
  • Некоторые ЖКД не способны работать в режиме низкого разрешения (например, 320 х 200). Но это связано со схемой управления, а не особенностями ЖК-монитора.
  • Плоские дисплеи очень уязвимы. Но их легкий вес снижает вероятность повреждения, а некоторые модели защищены стеклом.

Устройство LCD модуля 19-ти дюймового монитора рассмотрим на примере LCD модуля с матрицей TN+Film известного тайваньского производителя HannStar. Эти модули использовались в мониторах под торговыми марками Acer, LG, HP и др.

Под защитной металлической крышкой находятся элементы управления матрицей, расположенные на одной плате.

через разъем, обозначенный CN1 на плату управления матрицей поступают сигналы LVDS low-voltage differential signaling, и напряжение питания +5В

за обработку сигналов LVDS от скалера на плате управления матрицей отвечает контроллер

контроллер формирует сигналы, которые, через вплавленные в шлейфы дешифраторы управляют TFT (Thin film transistor) полевыми транзисторами субпикселов матрицы

на следующем изображении можно разглядеть как расположены субпикселы матрицы, чередующиеся в порядке R-G-B (red-green-blue)

жидкими кристаллами каждого субпиксела управляет отдельный полевой транзистор, то есть в матрице с разрешением 1280х1024 находятся 1280х1024=13010720 пикселов, а каждый пиксел в свою очередь состоит из трёх субпикселов, таким образом, число транзисторов в матрице с разрешением 1280х1024 равно 3932160.

Не вдаваясь в подробности поляризации светового потока, упрощенно, представить в общем как работет ЖК матрица можно так: если подать напряжение на транзистор субпиксела — то субпиксел НЕ будет пропускать свет, если не подавать напряжение — субпиксел будет пропускать свет. Если все три субпиксела RGB пропускают свет, то на экране мы будем видеть белую точку (пиксел), если все три субпиксела НЕ пропускают свет — то на экране мы будем видеть черную точку. В зависимости от интенсивности светового потока (т.е. от угла поворота жидких кристаллов в субпикселе), проходящего через три светофильтра RGB одного пиксела, мы можем получить точку любого цвета

за формирование необходимых напряжений питания TFT матрицы отвечает преобразователь, выполненный на интегральной микросхеме U200

если снять металлическую рамку и отделить ЖК матрицу от отражателя/световода, можно обнаружить, что матрица — почти прозрачная

рассмотрим конструкцию световода/рассеивателя. пластмассовая рамка фиксирует три плёнки (две рассеивающие и между ними — одна поляризационная) на поверхности световода, представляющего собой прямоугольную плиту из оргстекла толщиной ~10мм

под световодом находится подложка из белого пластика, толщиной 0,5мм

на стороне световода, обращенной к белой пластиковой подложке, нанесён специальный узор, для формирования равномерности засветки во всех точках дисплея

завершающей деталью «пирога» рассеивателя/световода является металлическое основание, в этом основании расположены крепежные элементы, с помощью которых весь ЖК модуль фиксируется в корпусе монитора

высоковольтные газоразрядные CCFL (Cold cathode fluorescent lamps) лампы расположены по две, горизонтально сверху и снизу световода

отражатель на несколько миллиметров длиннее, чем бОльшая сторона световодной плиты, служит также контейнером, благодаря которому лампы фиксируются сверху и снизу световода

благодаря спецальному узору световода, свет ламп равномерно распространяется по всей площади экрана. бывают и другие конструкции рассеивателя без тяжелой плиты световода, и лампами, расположенными горизонтально сверху вниз с единым шагом за ЖК матрицей. существуют конструкции рассеивателя/световода (backlight) с применением большего количества ламп, например 6, 8, 12

Важно!

Данный материал предназначен для ознакомления. Если у Вас нет достаточного опыта восстановления ЖК устройств — не разбирайте Ваш монитор, в результате некорректных действий Вы можете повредить LCD модуль

Эмулируется мерцанием с дизерингом [ ] .

Технические характеристики

Важнейшие характеристики ЖК-дисплеев:

  • тип матрицы - определяется технологией, по которой изготовлен ЖК-дисплей;
  • класс матрицы; стандарт ISO 13406-2 выделяет четыре класса матриц по допустимому количеству «битых пикселей »;
  • разрешение - горизонтальный и вертикальный размеры, выраженные в пикселях . В отличие от ЭЛТ -мониторов, ЖК-дисплеи имеют одно фиксированное разрешение, а поддержка остальные реализуется путём интерполяции (ЭЛТ-мониторы также имеют фиксированное количество пикселей, которые также состоят из красных, зеленых и синих точек, однако из-за особенностей технологии при выводе нестандартного разрешения в интерполяции нет необходимости);
  • размер точки (размер пикселя) - расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;
  • соотношение сторон экрана (пропорциональный формат) - отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.);
  • видимая диагональ - размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: при одинаковой диагонали, монитор формата 4:3 имеет большую площадь, чем монитор формата 16:9;
  • контрастность - отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;
  • яркость - количество света, излучаемое дисплеем (обычно измеряется в канделах на квадратный метр);
  • время отклика - минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:
    • время буферизации (input lag ). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20-50 ; в отдельных ранних моделях достигало 200 мс ;
    • время переключения. Указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас (2016) практически во всех мониторах заявленное время переключения составляет 1-6 мс ;
  • угол обзора - угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в технических параметрах своих мониторов углы обзора, такие, к примеру, как: CR 5:1 - 176/176°, CR 10:1 - 170/160°. Аббревиатура CR (англ. contrast ratio ) обозначает уровень контрастности при указанных углах обзора относительно контрастности при взгляде перпендикулярно экрану. В приведённом примере, при углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже, чем 10:1, при углах обзора 176°/176° - не ниже, чем до значения 5:1.

Устройство

Конструктивно дисплей состоит из следующих элементов:

  • ЖК-матрицы (первоначально - плоский пакет стеклянных пластин, между слоями которого и располагаются жидкие кристаллы; в 2000-е годы начали применяться гибкие материалы на основе полимеров);
  • источников света для подсветки ;
  • контактного жгута (проводов);
  • корпуса, чаще пластикового , с металлической рамкой для придания жёсткости.

Состав пикселя ЖК-матрицы:

  • два прозрачных электрода ;
  • слой молекул, расположенный между электродами;
  • два поляризационных фильтра , плоскости поляризации которых (как правило) перпендикулярны.

Если бы жидких кристаллов между фильтрами не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности.

Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.

Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения, это также стабилизирует свойства полученного изображения.

Малогабаритные ЖК-дисплеи без активной подсветки, применяемые в электронных часах, калькуляторах и т. п., обладают чрезвычайно низким энергопотреблением , что обеспечивает длительную (до нескольких лет) автономную работу таких устройств без замены гальванических элементов.

С другой стороны, ЖК-мониторы имеют и множество недостатков, часто принципиально трудноустранимых, например:

  • в отличие от ЭЛТ , могут отображать чёткое изображение лишь при одном («штатном») разрешении. Остальные достигаются интерполяцией ;
  • по сравнению с ЭЛТ, ЖК-мониторы имеют малый контраст и глубину чёрного цвета . Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;
  • из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ;
  • фактическая скорость смены изображения также остаётся заметно ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично;
  • зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии. В ЭЛТ-дисплеях эта проблема полностью отсутствует;
  • массово производимые ЖК-мониторы плохо защищены от механических повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация;
  • существует проблема дефектных пикселей . Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих. Мониторы с ЭЛТ этой проблеме не подвержены;
  • пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев , вообще не подверженных ей.
  • не очень большой диапазон рабочих температур: происходит ухудшение динамических характеристик (и далее неработоспособность) при даже небольших отрицательных температурах окружающей среды.
  • матрицы довольно хрупкие, а их замена весьма дорогостоящая

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи (матрица с органическими светодиодами), однако она встретила много сложностей в массовом производстве, особенно для матриц с большой диагональю.

Технологии

Основные технологии при изготовлении ЖК-дисплеев: TN+film, IPS (SFT, PLS) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённого в конкретных разработках.

Время отклика ЖК-мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс .

В настоящее время [когда? ] в России только два предприятия (московский МЭЛТ и саратовское НПП «Дисплей») разрабатывают и производят ЖК-дисплеи по технологиям TN и STN [ ] .

TN+film

TN + film (Twisted Nematic + film) - самая простая технология. Слово «film» в названии технологии означает «дополнительный слой», применяемый для увеличения угла обзора (ориентировочно - от 90 до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. Способа улучшения контрастности и углов обзора для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И поскольку направление поляризации фильтра на второй пластине составляет как раз угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое малое время отклика среди современных матриц [когда? ] , а также невысокую себестоимость. Недостатки: худшая цветопередача, наименьшие углы обзора.

IPS

AS-IPS (Advanced Super IPS - расширенная супер-IPS) - также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например, NEC LCD20WGX2), созданных по технологии S-IPS, разработанной консорциумом LG Display.

H-IPS A-TW (Horizontal IPS with Advanced True White Polarizer ) - разработана LG Display для корпорации NEC . Представляет собой H-IPS панель с цветовым фильтром TW (True White - «настоящий белый») для придания белому цвету большей реалистичности и увеличения углов обзора без искажения изображения (исключается эффект свечения ЖК-панелей под углом - так называемый «глоу-эффект»). Этот тип панелей используется при создании профессиональных мониторов высокого качества .

AFFS (Advanced Fringe Field Switching , неофициальное название - S-IPS Pro) - дальнейшее улучшение IPS, разработана компанией BOE Hydis в 2003 году. Увеличенная напряжённость электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

Развитие технологии «super fine TFT» от NEC
Название Краткое обозначение Год Преимущество Примечания
Super fine TFT SFT 1996 Широкие углы обзора, глубокий чёрный цвет . При улучшении цветопередачи яркость стала немного ниже.
Advanced SFT A-SFT 1998 Лучшее время отклика Технология эволюционировала до A-SFT (Advanced SFT, Nec Technologies Ltd. в 1998), значительно уменьшив время отклика.
Super-advanced SFT SA-SFT 2002 Высокая прозрачность SA-SFT, разработанная Nec Technologies Ltd. в 2002, позволила улучшить прозрачность в 1,4 раза по сравнению с A-SFT.
Ultra-advanced SFT UA-SFT 2004 Высокая прозрачность
Цветопередача
Высокая контрастность
Позволила достичь в 1,2 раза большей прозрачности по сравнению с SA-SFT, 70 % охвата цветового диапазона NTSC и увеличения контрастности.
Развитие технологии IPS фирмой Hitachi
Название Краткое обозначение Год Преимущество Прозрачность/
Контрастность
Примечания
Super TFT IPS 1996 Широкие углы обзора 100/100
Базовый уровень
Большинство панелей также поддерживают реалистичную цветопередачу (8 бит на канал) . Эти улучшения появились ценой более медленного времени отклика, изначально около 50 мс. IPS панели также были очень дороги.
Super-IPS S-IPS 1998 Отсутствует цветовой сдвиг 100/137 IPS был вытеснен S-IPS (Super-IPS, Hitachi Ltd. в 1998), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика
Advanced super-IPS AS-IPS 2002 Высокая прозрачность 130/250 AS-IPS, также разработанный Hitachi Ltd. в 2002, повышает, главным образом, контрастность традиционных S-IPS панелей до уровня, при котором они стали вторыми после некоторых S-PVA.
IPS-provectus IPS-Pro 2004 Высокая контрастность 137/313 Технология панелей IPS Alpha с более широкой цветовой гаммой и контрастностью, сравнимой с контрастностью PVA и ASV дисплеев без углового свечения.
IPS alpha IPS-Pro 2008 Высокая контрастность Следующее поколение IPS-Pro
IPS alpha next gen IPS-Pro 2010 Высокая контрастность Hitachi передает технологию Panasonic
Развитие технологии IPS фирмой LG
Название Краткое обозначение Год Примечания
Super-IPS S-IPS 2001 LG Display остается одним из главных производителей панелей, основанных на технологии Hitachi Super-IPS.
Advanced super-IPS AS-IPS 2005 Улучшена контрастность с расширенной цветовой гаммой.
Horizontal IPS H-IPS 2007 Достигнута ещё большая контрастность и визуальная более однородная поверхность экрана. Также дополнительно появилась технология Advanced True Wide Polarizer на основе поляризационной плёнки NEC, для достижения более широких углов обзора, исключения засветки при взгляде под углом. Используется в профессиональной работе с графикой.
Enhanced IPS e-IPS 2009 Имеет более широкую апертуру для увеличения светопроницаемости при полностью открытых пикселях, что позволяет использовать более дешевые в производстве лампы подсветки, с более низким энергопотреблением. Улучшен диагональный угол обзора, время отклика уменьшено до 5 мс.
Professional IPS P-IPS 2010 Обеспечивает 1,07 млрд цветов (30-битная глубина цвета). Больше возможных ориентаций для субпикселя (1024 против 256) и лучшая глубина true color-цветопередачи.
Advanced high performance IPS AH-IPS 2011 Улучшена цветопередача, увеличено разрешение и PPI , повышена яркость и понижено энергопотребление .

MVA

Технология VA (сокр. от vertical alignment - вертикальное выравнивание) была представлена в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Наследницей технологии VA стала технология MVA (multi-domain vertical alignment ), разработанная компанией Fujitsu как компромисс между TN- и IPS-технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом, благодаря использованию технологий ускорения (RTC), эти матрицы не сильно отстают от TN+Film по времени отклика. Они значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

Достоинствами технологии MVA являются глубокий чёрный цвет (при перпендикулярном взгляде) и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля . Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

  • PVA (patterned vertical alignment ) от Samsung;
  • Super PVA от Sony-Samsung (S-LCD);
  • Super MVA от CMO;
  • ASV (advanced super view ), также называется ASVA (axially symmetric vertical alignment ) от Sharp.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским свойствам.

PLS

PLS-матрица (plane-to-line switching ) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года. Предполагается, что эта матрица будет на 15 % дешевле, чем IPS .

Достоинства:

  • плотность пикселей выше по сравнению с IPS (и аналогична с *VA/TN) [ ] ;
  • высокая яркость и хорошая цветопередача [ ] ;
  • большие углы обзора [ ] ;
  • полное покрытие диапазона sRGB [ ] ;
  • низкое энергопотребление, сравнимое с TN [ ] .

Недостатки:

  • время отклика (5-10 мс) сравнимо с S-IPS, лучше чем у *VA, но хуже чем у TN.

PLS и IPS

Компания Samsung не давала описания технологии PLS . Сделанные независимыми наблюдателями сравнительные исследования матриц IPS и PLS под микроскопом не выявили отличий . То, что PLS является разновидностью IPS, косвенно признала сама корпорация Samsung своим иском против корпорации LG: в иске утверждалось, что используемая LG технология AH-IPS является модификацией технологии PLS .

Подсветка

Сами по себе жидкие кристаллы не светятся. Чтобы изображение на жидкокристаллическом дисплее было видимым, нужен . Источник может быть внешним (например, Солнце), либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

Внешнее освещение

Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени используют внешнее освещение (от Солнца, ламп комнатного освещения и так далее). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи , в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

Подсветка лампами накаливания

В прошлом в некоторых наручных часах с монохромным ЖК-дисплеем использовалась сверхминиатюрная лампа накаливания . Но из-за высокого энергопотребления лампы накаливания являются невыгодными. Кроме того, они не подходят для использования, например, в телевизорах, так как выделяют много тепла (перегрев вреден для жидких кристаллов) и часто перегорают.

Электролюминесцентная панель

Монохромные ЖК-дисплеи некоторых часов и приборных индикаторов используют для подсветки электролюминесцентную панель. Эта панель представляет собой тонкий слой кристаллофосфора (например, сульфида цинка), в котором происходит электролюминесценция - свечение под действием тока. Обычно светится зеленовато-голубым или жёлто-оранжевым светом.

Подсветка газоразрядными («плазменными») лампами

В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких

Здравствуйте, уважаемые читатели блога сайт. Сегодня поговорим об устройстве жидкокристаллического (жк) монитора, точнее о его дисплее. Ведь именно экран монитора, это то место, на которое мы с вами дольше всего смотрим при работе за компьютером.

Надо сказать, современные жидкокристаллические мониторы в значительной степени отличаются от своих "предшественников" - ЭЛТ мониторов (мониторов с электронно-лучевыми трубками), которые сейчас уже нигде не продаются. Вообще, мониторы с электронно-лучевой трубкой стали активно исчезать с прилавков магазинов электроники уже начиная года так с 2007. И это было обусловлено рядом причин, о которых будет сказано чуть ниже.

Рано или поздно это должно было произойти, я имею ввиду массовый переход на жидкокристаллические мониторы, несмотря на скептическое отношение к ним большинства пользователей, уже владеющих ЭЛТ. И действительно, первые модели ЖК мониторов обладали рядом недостатков, которых лишены современные модели, и главным недостатком пожалуй были очень небольшие углы обзора, в основном по горизонтали. Картинка инвертировалась и уходила в негатив буквально при малейшем отклонении головы от положения, когда взгляд падал строго перпендикулярно плоскости экрана.

Вторым аргументом "в пользу" мониторов с электронно-лучевыми трубками служило то, что жк мониторы на первых порах обладали действительно малым временем отклика матрицы, причем это было заметно невооруженным взглядом, когда динамическая смена картинки (например при просмотре фильма) сопровождалась всевозможными шлейфами и артефактами на экране.

Но почему же несмотря на "сырость" тогдашних ЖК мониторов, они все же получили массовую популярность? Я думаю дело в том, что ЭЛТ тоже не были лишены недостатков, они имели большие габариты, часто их глубина (толщина) была примерно равна диагонали самого экрана. К тому же, длительное пребывание за ними приводило к быстрому утомлению, в основном из-за мерцания и интенсивного электромагнитного излучения. Ну а поскольку прогресс идет в направлении уменьшения устройств и их технологического совершенствования, то логично было бы предсказать такую популярность, какую на сегодняшний день имеют LCD мониторы.

Главное отличие ЭЛТ от ЖК мониторов

В основе работы ЭЛТ монитора лежит специальная стеклянная трубка, внутри которой вакуум. Так же, внутри стеклянной колбы находятся электронные пушки, испускающие поток заряженных частиц (электронов).

Эти электроны заставляют светиться точки люминофора, которым тонким слоем изнутри покрыта передняя стенка электронно-лучевой трубки. То есть энергия электронов превращается в свет, вот эти самые светящиеся точки и формируют изображение.

Принцип работы ЖК монитора совершенно иной. Здесь уже нет никаких трубок, а изображение формируется совершенно другим способом. Жидкокристаллические дисплеи уже имеют в своем названии указание на то, с помощью чего создается изображение на экране. Да да, именно жидкие кристаллы, которые были открыты еще в 1888 году, играют ключевую роль в формировании картинки.

Устройство LCD монитора больше напоминает слоеный пирог, каждый слой имеет свое назначение. Итак, можно выделить несколько слоев, из которых и состоит наш монитор.

Первый слой - это система подсветки ЖК матрицы, она может быть выполнена с применением люминесцентных ламп с холодным катодом, либо светодиодов. Вторым слоем идет рассеивающий фильтр, который позволяет повысить уровень равномерности подсветки всей матрицы. Далее идет первый вертикальный поляризационный фильтр, который пропускает только вертикально направленные световые волны. Четвертым слоем представлена сама матрица, представляющая собой две прозрачные стеклянные пластины, между которыми расположены молекулы поляризационного вещества - жидкие кристаллы. Пятым слоем идут специальные цветофильтры, отвечающие за окрас каждого субпикселя. Ну и последним слоем идет второй, уже горизонтальный поляризационный фильтр, который, как вы уже наверное догадались, пропускает только лишь горизонтальные волны. Вот и все устройство ЖК монитора. Разберем подробнее.

В жидкокристаллической матрице каждый кристалл отвечает за определенную точку в изображении на экране. Когда монитор работает, свет от системы подсветки проходит через слой жидких кристаллов и зритель видит некую "мозаику" из пикселей, окрашенных в разные цвета. Каждый пиксель состоит из трех субпикселей, красного, зеленого и синего.

С помощью этих трех базовых цветов экран способен отображать до 17 млн. различных оттенков цветов. Такая глубина цвета достигается различным количеством света, проходящего через каждый пиксель. 17 миллионов возможных сочетаний - 17 млн. возможных цветов.

Даже видео имеется, где крупным планом показана структура пикселей LCD монитора.

Любой свет, как известно, имеет направление, поскольку это еще и электромагнитная волна, она еще имеет поляризацию. Луч может быть вертикальным, горизонтальным, иметь любой промежуточный угол.

Очень важно, учитывая, что первый фильтр пропускает только вертикально направленные лучи. Излучение проходит сквозь каждый субпиксель и достигает второго поляризационного фильтра, который пропускает только горизонтальные лучи. Иначе говоря, не весь свет, излученный системой подсветки способен дойти до пользователя.

Кристаллы изменяют поляризацию световой волны , чтобы она прошла через второй фильтр. Вообще, жидкие кристаллы - крайне интересная субстанция. Их молекулы действительно ведут себя, как молекулы жидкого вещества, находясь в постоянном движении. Но как и положено кристаллам, их ориентация остается неизменной.